On the radius of convexity and boundary distortion of Schlicht functions
HTML articles powered by AMS MathViewer
- by David E. Tepper
- Trans. Amer. Math. Soc. 150 (1970), 519-528
- DOI: https://doi.org/10.1090/S0002-9947-1970-0268370-0
- PDF | Request permission
Abstract:
Let $w = f(z) = z + \sum \nolimits _{n = 2}^\infty {{a_n}{z^n}}$ be regular and univalent for $|z| < 1$ and map $|z| < 1$ onto a region which is starlike with respect to $w = 0$. If ${r_0}$ denotes the radius of convexity of $w = f(z)$, $d_0 = \min |f(z)|$ for $|z| = {r_0}$, and ${d^ \ast } = \inf |\beta |$ for $f(z) \ne \beta$, then it has been conjectured that ${d_0}/{d^ \ast } \geqq 2/3$. It is shown here that ${d_0}/{d^ \ast } \geqq 0.343 \ldots$, which improves the old estimate ${d_0}/{d^ \ast } \geqq 0.268 \ldots$. In addition, sharp estimates for ${r_0}$ are given which depend on the value of $|{a_2}|$.References
- Mark Finkelstein, Growth estimates of convex functions, Proc. Amer. Math. Soc. 18 (1967), 412–418. MR 214749, DOI 10.1090/S0002-9939-1967-0214749-8
- G. M. Golusin, Interior problems of the theory of univalent functions, Uspekhi Matem. Nauk 6 (1939), 26–89. MR 0000290
- E. Gray and A. Schild, A new proof of a conjecture of Schild, Proc. Amer. Math. Soc. 16 (1965), 76–77. MR 171910, DOI 10.1090/S0002-9939-1965-0171910-7 T. H. Gronwall, On the distortion in conformal mapping when the second coefficient in the mapping function has an assigned value, Proc. Nat. Acad. Sci. U. S. A. 6 (1920), 300-302.
- Zeev Nehari, Conformal mapping, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1952. MR 0045823
- E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $z<\,1$, Arch. Rational Mech. Anal. 32 (1969), 100–112. MR 235110, DOI 10.1007/BF00247676 E. Pflanz, Über $P$-fach Symmetriche schlichte Functionen, Math. Z. 40 (1935), 72-85.
- Malcolm I. S. Robertson, On the theory of univalent functions, Ann. of Math. (2) 37 (1936), no. 2, 374–408. MR 1503286, DOI 10.2307/1968451
- Albert Schild, On a problem in conformal mapping of schlicht functions, Proc. Amer. Math. Soc. 4 (1953), 43–51. MR 54042, DOI 10.1090/S0002-9939-1953-0054042-X
- Albert Schild, On a class of univalent, star shaped mappings, Proc. Amer. Math. Soc. 9 (1958), 751–757. MR 95954, DOI 10.1090/S0002-9939-1958-0095954-5
- A. Schild, On a class of functions schlicht in the unit circle, Proc. Amer. Math. Soc. 5 (1954), 115–120. MR 60592, DOI 10.1090/S0002-9939-1954-0060592-3 —, On starlike functions of order $\alpha$, Amer. J. Math. 87 (1965), 65-70.
- Erich Strohhäcker, Beiträge zur Theorie der schlichten Funktionen, Math. Z. 37 (1933), no. 1, 356–380 (German). MR 1545400, DOI 10.1007/BF01474580
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 150 (1970), 519-528
- MSC: Primary 30.42
- DOI: https://doi.org/10.1090/S0002-9947-1970-0268370-0
- MathSciNet review: 0268370