Locally convex topological lattices
HTML articles powered by AMS MathViewer
- by Albert R. Stralka
- Trans. Amer. Math. Soc. 151 (1970), 629-640
- DOI: https://doi.org/10.1090/S0002-9947-1970-0264625-4
- PDF | Request permission
Abstract:
The main theorem of this paper is: Suppose that L is a topological lattice of finite breadth n. Then L can be embedded in a product of n compact chains if and only if L is locally convex and distributive. With this result it is then shown that the concepts of metrizability and separability are equivalent for locally convex, connected, distributive topological lattices of finite breadth.References
- Paul Alexandroff, Über die Metrisation der im Kleinen kompakten topologischen Räume, Math. Ann. 92 (1924), no. 3-4, 294–301 (German). MR 1512216, DOI 10.1007/BF01448011
- Lee W. Anderson, On the distributivity and simple connectivity of plane topological lattices, Trans. Amer. Math. Soc. 91 (1959), 102–112. MR 102575, DOI 10.1090/S0002-9947-1959-0102575-X
- Lee W. Anderson, One dimensional topological lattices, Proc. Amer. Math. Soc. 10 (1959), 715–720. MR 107678, DOI 10.1090/S0002-9939-1959-0107678-7
- Lee W. Anderson, On the breadth and co-dimension of a topological lattice, Pacific J. Math. 9 (1959), 327–333. MR 105465
- L. W. Anderson, The existence of continuous lattice homomorphisms, J. London Math. Soc. 37 (1962), 60–62. MR 133272, DOI 10.1112/jlms/s1-37.1.60
- Kirby A. Baker and Albert R. Stralka, Compact, distributive lattices of finite breadth, Pacific J. Math. 34 (1970), 311–320. MR 282895
- Garrett Birkhoff, Lattice theory, 3rd ed., American Mathematical Society Colloquium Publications, Vol. XXV, American Mathematical Society, Providence, R.I., 1967. MR 0227053
- R. P. Dilworth, A decomposition theorem for partially ordered sets, Ann. of Math. (2) 51 (1950), 161–166. MR 32578, DOI 10.2307/1969503
- Eldon Dyer and Allen Shields, Connectivity of topological lattices, Pacific J. Math. 9 (1959), 443–448. MR 105464
- F. B. Jones, A theorem concerning locally peripherally separable spaces, Bull. Amer. Math. Soc. 41 (1935), no. 6, 437–439. MR 1563107, DOI 10.1090/S0002-9904-1935-06111-7
- F. B. Jones, Concerning certain linear abstract spaces and simple continuous curves, Bull. Amer. Math. Soc. 45 (1939), 623–628. MR 268, DOI 10.1090/S0002-9904-1939-07054-7
- J. D. Lawson, Lattices with no interval homomorphisms, Pacific J. Math. 32 (1970), 459–465. MR 256363 —, The relation of breadth and codimension in topological semilattices. II (to appear).
- S. Mrówka, Further results on $E$-compact spaces. I, Acta Math. 120 (1968), 161–185. MR 226576, DOI 10.1007/BF02394609
- Leopoldo Nachbin, Topology and order, Van Nostrand Mathematical Studies, No. 4, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1965. Translated from the Portuguese by Lulu Bechtolsheim. MR 0219042
- J. H. Roberts, A problem of Treybig concerning separable spaces, Duke Math. J. 28 (1961), 153–155. MR 131858
- Prabir Roy, Separability of metric spaces, Trans. Amer. Math. Soc. 149 (1970), 19–43. MR 263020, DOI 10.1090/S0002-9947-1970-0263020-1
- E. D. Shirley and A. R. Stralka, Homomorphisms on connected topological lattices, Duke Math. J. 38 (1971), 483–490. MR 279776
- L. B. Treybig, Concerning certain locally peripherally separable spaces, Pacific J. Math. 10 (1960), 697–704. MR 116309
- Alexander Doniphan Wallace, Two theorems on topological lattices, Pacific J. Math. 7 (1957), 1239–1241. MR 94305
- Gordon Thomas Whyburn, Analytic Topology, American Mathematical Society Colloquium Publications, Vol. 28, American Mathematical Society, New York, 1942. MR 0007095
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 151 (1970), 629-640
- MSC: Primary 54.56; Secondary 06.00
- DOI: https://doi.org/10.1090/S0002-9947-1970-0264625-4
- MathSciNet review: 0264625