## On topologically invariant means on a locally compact group

HTML articles powered by AMS MathViewer

- by Ching Chou
- Trans. Amer. Math. Soc.
**151**(1970), 443-456 - DOI: https://doi.org/10.1090/S0002-9947-1970-0269780-8
- PDF | Request permission

## Abstract:

Let $\mathcal {M}$ be the set of all probability measures on $\beta N$. Let*G*be a locally compact, noncompact, amenable group. Then there is a one-one affine mapping of $\mathcal {M}$ into the set of all left invariant means on ${L^\infty }(G)$. Note that $\mathcal {M}$ is a very big set. If we further assume

*G*to be $\sigma$-compact, then we have a better result: The set $\mathcal {M}$ can be embedded affinely into the set of two-sided topologically invariant means on ${L^\infty }(G)$. We also give a structure theorem for the set of all topologically left invariant means when

*G*is $\sigma$-compact.

## References

- Ching Chou,
*Minimal sets and ergodic measures for $\beta N\backslash N$*, Illinois J. Math.**13**(1969), 777–788. MR**249569** - Ching Chou,
*On the size of the set of left invariant means on a semi-group*, Proc. Amer. Math. Soc.**23**(1969), 199–205. MR**247444**, DOI 10.1090/S0002-9939-1969-0247444-1 - Mahlon M. Day,
*Amenable semigroups*, Illinois J. Math.**1**(1957), 509–544. MR**92128** - Mahlon M. Day,
*Normed linear spaces*, Reihe: Reelle Funktionen, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1958. MR**0094675** - W. R. Emerson and F. P. Greenleaf,
*Covering properties and Følner conditions for locally compact groups*, Math. Z.**102**(1967), 370–384. MR**220860**, DOI 10.1007/BF01111075 - Leonard Gillman and Meyer Jerison,
*Rings of continuous functions*, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR**0116199** - E. Granirer,
*On amenable semigroups with a finite-dimensional set of invariant means. I*, Illinois J. Math.**7**(1963), 32–48. MR**144197** - Edmond Granirer,
*On the invariant mean on topological semigroups and on topological groups*, Pacific J. Math.**15**(1965), 107–140. MR**209388** - E. Granirer,
*On Baire measures on $D$-topological spaces*, Fund. Math.**60**(1967), 1–22. MR**208355**, DOI 10.4064/fm-60-1-1-22 - Frederick P. Greenleaf,
*Invariant means on topological groups and their applications*, Van Nostrand Mathematical Studies, No. 16, Van Nostrand Reinhold Co., New York-Toronto-London, 1969. MR**0251549** - A. Hulanicki,
*Means and Følner condition on locally compact groups*, Studia Math.**27**(1966), 87–104. MR**195982**, DOI 10.4064/sm-27-2-87-104 - J. M. Kister,
*Uniform continuity and compactness in topological groups*, Proc. Amer. Math. Soc.**13**(1962), 37–40. MR**133392**, DOI 10.1090/S0002-9939-1962-0133392-8 - Indar S. Luthar,
*Uniqueness of the invariant mean on Abelian topological semigroups*, Trans. Amer. Math. Soc.**104**(1962), 403–411. MR**150232**, DOI 10.1090/S0002-9947-1962-0150232-6 - I. Namioka,
*Følner’s conditions for amenable semi-groups*, Math. Scand.**15**(1964), 18–28. MR**180832**, DOI 10.7146/math.scand.a-10723 - Ralph A. Raimi,
*On Banach’s generalized limits*, Duke Math. J.**26**(1959), 17–28. MR**117569** - Neil W. Rickert,
*Amenable groups and groups with the fixed point property*, Trans. Amer. Math. Soc.**127**(1967), 221–232. MR**222208**, DOI 10.1090/S0002-9947-1967-0222208-6

## Bibliographic Information

- © Copyright 1970 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**151**(1970), 443-456 - MSC: Primary 22.65
- DOI: https://doi.org/10.1090/S0002-9947-1970-0269780-8
- MathSciNet review: 0269780