On topologically invariant means on a locally compact group
HTML articles powered by AMS MathViewer
- by Ching Chou
- Trans. Amer. Math. Soc. 151 (1970), 443-456
- DOI: https://doi.org/10.1090/S0002-9947-1970-0269780-8
- PDF | Request permission
Abstract:
Let $\mathcal {M}$ be the set of all probability measures on $\beta N$. Let G be a locally compact, noncompact, amenable group. Then there is a one-one affine mapping of $\mathcal {M}$ into the set of all left invariant means on ${L^\infty }(G)$. Note that $\mathcal {M}$ is a very big set. If we further assume G to be $\sigma$-compact, then we have a better result: The set $\mathcal {M}$ can be embedded affinely into the set of two-sided topologically invariant means on ${L^\infty }(G)$. We also give a structure theorem for the set of all topologically left invariant means when G is $\sigma$-compact.References
- Ching Chou, Minimal sets and ergodic measures for $\beta N\backslash N$, Illinois J. Math. 13 (1969), 777–788. MR 249569
- Ching Chou, On the size of the set of left invariant means on a semi-group, Proc. Amer. Math. Soc. 23 (1969), 199–205. MR 247444, DOI 10.1090/S0002-9939-1969-0247444-1
- Mahlon M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509–544. MR 92128
- Mahlon M. Day, Normed linear spaces, Reihe: Reelle Funktionen, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1958. MR 0094675
- W. R. Emerson and F. P. Greenleaf, Covering properties and Følner conditions for locally compact groups, Math. Z. 102 (1967), 370–384. MR 220860, DOI 10.1007/BF01111075
- Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0116199
- E. Granirer, On amenable semigroups with a finite-dimensional set of invariant means. I, Illinois J. Math. 7 (1963), 32–48. MR 144197
- Edmond Granirer, On the invariant mean on topological semigroups and on topological groups, Pacific J. Math. 15 (1965), 107–140. MR 209388
- E. Granirer, On Baire measures on $D$-topological spaces, Fund. Math. 60 (1967), 1–22. MR 208355, DOI 10.4064/fm-60-1-1-22
- Frederick P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Mathematical Studies, No. 16, Van Nostrand Reinhold Co., New York-Toronto-London, 1969. MR 0251549
- A. Hulanicki, Means and Følner condition on locally compact groups, Studia Math. 27 (1966), 87–104. MR 195982, DOI 10.4064/sm-27-2-87-104
- J. M. Kister, Uniform continuity and compactness in topological groups, Proc. Amer. Math. Soc. 13 (1962), 37–40. MR 133392, DOI 10.1090/S0002-9939-1962-0133392-8
- Indar S. Luthar, Uniqueness of the invariant mean on Abelian topological semigroups, Trans. Amer. Math. Soc. 104 (1962), 403–411. MR 150232, DOI 10.1090/S0002-9947-1962-0150232-6
- I. Namioka, Følner’s conditions for amenable semi-groups, Math. Scand. 15 (1964), 18–28. MR 180832, DOI 10.7146/math.scand.a-10723
- Ralph A. Raimi, On Banach’s generalized limits, Duke Math. J. 26 (1959), 17–28. MR 117569
- Neil W. Rickert, Amenable groups and groups with the fixed point property, Trans. Amer. Math. Soc. 127 (1967), 221–232. MR 222208, DOI 10.1090/S0002-9947-1967-0222208-6
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 151 (1970), 443-456
- MSC: Primary 22.65
- DOI: https://doi.org/10.1090/S0002-9947-1970-0269780-8
- MathSciNet review: 0269780