EXISTENCE AND UNIQUENESS OF FIXED-POINTS
FOR SEMIGROUPS OF AFFINE MAPS

BY
ROBERT E. HUFF

Abstract. The Day fixed-point theorem is extended to include both existence and
uniqueness. For uniqueness of fixed-points, continuity for pointwise limits of a semi-
group of continuous affine maps is needed; necessary and sufficient conditions for
this are obtained and compared with the stronger condition of equicontinuity. The
comparison is between, on the one hand, the above condition, separate continuity,
and weak compactness, and, on the other hand, equicontinuity, joint continuity, and
strong compactness. An extension of the Kakutani fixed-point theorem results. Also
as a corollary, known necessary and sufficient conditions for continuity of the
convolution operation are obtained.

1. Introduction. M. M. Day [3] proved that a left-amenable semigroup S
acting as continuous affine maps on a compact convex set K leaves some point in
K fixed. In [10] it was shown that these hypotheses imply that there is an affine map
on K which sends each point in K into a fixed-point in its closed convex orbit;
also if S is equicontinuous and right amenable, then there is at most one fixed-
point in every such orbit. In §3 below we derive extensions of these results by
different methods. The assumption of equicontinuity for uniqueness can be replaced
by the assumption that every pointwise limit of convex combinations of members
of S is continuous; we obtain necessary and sufficient conditions for this latter
assumption to hold, together with analogous necessary and sufficient conditions
for equicontinuity. The entire development is an exploitation of properties of the
affine space of a compact convex set, developed in §2. In §4 we apply our results
to obtain new proofs of known necessary and sufficient conditions for continuity
of convolutions.

If S is a nonvoid set, then $m(S)$ denotes the space of all bounded, real-valued
functions on S, with pointwise linear operations, the uniform norm, and pointwise
ordering ($f \geq 0$ if and only if $f(s) \geq 0$ for all s in S).
By a function space on a set S we mean a linear subspace X of $m(S)$ such that X contains the constant functions; X is separating if for every two distinct points x, y in S there exists an f in X such that $f(x) \neq f(y)$. $M(X)$ denotes the set of positive linear functionals on X of norm one; the elements of $M(X)$ will be called X-means. $M(X)$ is a weak* compact convex subset of X^*; we shall always assume that $M(X)$ is given the weak* topology. The natural map $q_X: S \to M(X)$ is given by $[q_X(s)](f) = f(s)$ ($f \in X, s \in S$). The separation theorem implies that $M(X) = \text{cl} \left(\text{co} \left(q_X(S) \right) \right)$ ($\text{co}(A)$ denotes the convex hull of a set A; $\text{cl}(\text{co}(A))$, its closure). For these and other properties of means, see [2].

Let S be a set which is a semigroup under a binary operation denoted by juxtaposition. A function space A^* on S is said to be left [respectively, right] invariant provided $f \circ L_s \ [f \circ R_s]$ is in X whenever f is in X and s is in S, where $L_s: S \to S \ [R_s: S \to S]$ is defined by $L_s(t) = st \ [R_s(t) = ts]$. An X-mean is then said to be left [right] invariant if $\mu(f \circ L_s) = \mu(f) \ [\mu(f \circ R_s) = \mu(f)]$ for all f in X and s in S. S is said to be left [right] amenable if there exists a left [right] invariant $m(S)$-mean [2].

A function f on a semigroup S is said to be strongly [weakly] almost periodic if the set $\{f \circ L_s : s \in S\}$ is relatively compact [relatively weakly compact] in $m(S)$; equivalently, if $\{f \circ R_s : s \in S\}$ is relatively compact [relatively weakly compact] in $m(S)$ (see [4, p. 80] for references). The function space $AP(S)$ [$WAP(S)$] of strongly [weakly] almost periodic functions is complete and two-sided invariant [6]. Von Neumann proved that there exists a two-sided invariant $AP(S)$-mean if S is a group (see [7, §18]); more generally, Ryll-Nardzewski has shown that there exists a two-sided invariant $WAP(S)$-mean if S is a group [18].

Throughout this paper, for any space of functions the letter p will denote the topology of pointwise convergence, and the letter u will denote the topology of uniform convergence.

The symbol $\| \cdot \|$ will be used for all norm topologies, and w will denote the weak topology for any normed linear space.

2. Spaces of affine functions. In this section we develop some needed properties of certain spaces of functions on a compact convex subset K of a locally convex (Hausdorff) space (following [1] we shall call such a set a convex compactum).

If K is a convex compactum, the function space $A(K)$, consisting of all real-valued, continuous, affine maps on K, is separating. The natural map $q_{A(K)}: K \to M(A(K))$ is continuous, one-to-one, and affine; thus $q_{A(K)}(K)$ is compact and convex. But then $M(A(K)) = \text{cl} \left(\text{co} \left(q_{A(K)}(K) \right) \right) = q_{A(K)}(K)$; thus, $q_{A(K)}$ is an affine homeomorphism of K onto $M(A(K))$. From this and the fact that $A(K)^*$ is positively generated (which follows from [13, Theorem 23.6]), the weak topology for $A(K)$ coincides with the topology of pointwise convergence on K.

Let X be any function space on a set S, and let ψ be a map on S to a convex compactum K such that $f \circ \psi$ is in X for all f in $A(K)$. Let $\psi^*: A(K) \to X$ be given by $\psi^*(f) = f \circ \psi$ ($f \in A(K)$), and let $\psi^{**}: M(X) \to M(A(K))$ be given by $\psi^{**}(\mu) = \mu \circ \psi^*$ ($\mu \in M(X)$). Then the function $\rho = (q_{A(K)})^{-1} \circ \psi^{**}$ is a continuous affine
map on $M(X)$ to K such that $\rho \circ q_x = \psi_x$; furthermore, since $M(X) = \text{cl}(\text{co} \{q_x(S)\})$, ρ is the only continuous affine map with this property. For every μ in $M(X)$, we have $f(\rho(\mu)) = \mu(f \circ \psi)$ for all f in $A(K)$. (These remarks are the content of Lemma 1.4 of [17].)

We remark that everything in the previous two paragraphs holds if one replaces $A(K)$ by any separating subfunction space of $A(K)$. The facts above will be used heavily in the next two sections.

The notation $A(K, K)$ will be used for the semigroup (under composition) of all continuous affine maps on K to K.

The product space $A(K)^{A(K)}$ with its strong [respectively, weak] operator topology is the space $((A(K), \| \cdot \|)^{A(K)}, p) \cup ((A(K), w)^{A(K)}, p)$. $\mathcal{L}(A(K))$ denotes the subspace of $A(K)^{A(K)}$ consisting of all bounded linear operators on $A(K)$.

Suppose φ is in $A(K, K)$. Then φ has an “adjoint” φ^* in $\mathcal{L}(A(K))$ given by $\varphi^*(f) = f \circ \varphi$ ($f \in A(K)$). The essential properties of φ^* are (i) $\| \varphi^* \| = 1$, (ii) $\varphi^*(C) = C$ (where C denotes any constant function), and (iii) φ^* is order preserving. Let $\mathcal{A}(K)$ denote the subset of $\mathcal{L}(A(K))$ consisting of all members of $\mathcal{L}(A(K))$ with properties (i), (ii), and (iii); and let $\beta: A(K, K) \rightarrow \mathcal{A}(K)$ be defined by $\beta(\varphi) = \varphi^*$ ($\varphi \in A(K, K)$). $\mathcal{A}(K)$ is closed in $A(K)^{A(K)}$ with respect to either the weak or the strong operator topology. $\mathcal{A}(K)$ [respectively, $\mathcal{A}_w(K)$] denotes $\mathcal{A}(K)$ with the induced strong [respectively, weak] operator topology.

Assertion. β is an affine homeomorphism of $(A(K, K), p)$ [respectively, $(A(K, K), w)$] onto $\mathcal{A}(K)$ [respectively, $\mathcal{A}_w(K)$].

Proof. β is affine and one-to-one. To see that β is onto, let ψ be an element of $\mathcal{A}(K)$. Then ψ has an adjoint $\psi^*: M(A(K)) \rightarrow M(A(K))$; $(q_{A(K)})^{-1} \circ \psi^* \circ q_{A(K)}$ is in $A(K, K)$, and $\psi = \beta((q_{A(K)})^{-1} \circ \psi^* \circ q_{A(K)})$.

Let $\{\varphi_a\}$ be a net in $A(K, K)$, and let φ_0 be a point in $A(K, K)$. We have $\varphi_a \rightarrow \varphi_0$ in $(A(K, K), p) \Leftrightarrow \varphi_a(k) \rightarrow \varphi_0(k)$ in K for all k in K \Rightarrow $f \circ \varphi_a(k) \rightarrow f \circ \varphi_0(k)$ for all f in $A(K)$ and all k in K \Rightarrow $\beta(\varphi_a) \rightarrow \beta(\varphi_0)$ in $\mathcal{A}_w(K)$. Hence β is a homeomorphism of $(A(K, K), p)$ onto $\mathcal{A}_w(K)$.

Now suppose $\varphi_a \rightarrow \varphi_0$ in $(A(K, K), w)$. Let f be in $A(K)$. Let $\varepsilon > 0$ be given and consider the member U of the uniformity for K given by

$$U = \{(x, y) \in K \times K : |f(x) - f(y)| < \varepsilon\}.$$

There exists an index a_0 such that $\alpha \geq a_0$ implies $(\varphi_a(k), \varphi_0(k))$ is in U for all k in K, i.e. $|f \circ \varphi_a(k) - f \circ \varphi_0(k)| < \varepsilon$ for all k in K, or $\|\beta(\varphi_a)(f) - \beta(\varphi_0)(f)\| \leq \varepsilon$. Thus for every f in $A(K)$, $[\beta(\varphi_a)(f)] = [\beta(\varphi_0)(f)]$ in $(A(K), \| \cdot \|)$, i.e. $\beta(\varphi_a) \rightarrow \beta(\varphi_0)$ in $\mathcal{A}_w(K)$.

Conversely, suppose $\beta(\varphi_a) \rightarrow \beta(\varphi_0)$ in $\mathcal{A}_w(K)$. Let U be a member of the uniformity of K. There exist f_1, \ldots, f_n in $A(K)$ such that

$$\{(x, y) \in K \times K : |f_i(x) - f_i(y)| < 1 ; i = 1, \ldots, n\} \subset U.$$

There is an index a_0 such that $\alpha \geq a_0$ implies

$$\|\beta(\varphi_a)(f_i) - \beta(\varphi_0)(f_i)\| = \|f_i \circ \varphi_a - f_i \circ \varphi_0\| < 1$$

for all $i = 1, \ldots, n$, i.e. $|f_i(\varphi_a(k)) - f_i(\varphi_0(k))| < 1$ for all $i = 1, \ldots, n$, and all k in K. Hence $(\varphi_a(k), \varphi_0(k))$ is in U for all k in K, and so $\varphi_a \to \varphi_0$ in $(A(K, K), u)$. We have now proved that β is a homeomorphism of $(A(K, K), u)$ onto $\mathcal{A}(K)$.

Theorem 1. Let K be a convex compactum, and let S be a semigroup of continuous affine maps on K to K. Let T denote the closure of S in (K^K, p). The following three statements are equivalent:

1. T consists of continuous (affine) functions.
2. The mapping $(T, p) \times K \to K$ given by $(t, k) \to t(k)$ is separately continuous.
3. For every f in $A(K)$ the set $f \circ S = \{f \circ s : s \in S\}$ is relatively compact in $(A(K), w)$.

Theorem 2. Let K, S, T be as in Theorem 1. The following three statements are equivalent:

1. S is equicontinuous on K.
2. The mapping $(T, p) \times K \to K$ given by $(t, k) \to t(k)$ is jointly continuous.
3. For every f in $A(K)$, the set $f \circ S$ is relatively compact in $(A(K), w)$.

Proofs. The equivalence of (1) and (2) in Theorem 1 is clear; for Theorem 2 it follows from [12, Theorems 14, 15, 16, pp. 232–233].

Suppose (1) holds in Theorem 1 [respectively, Theorem 2]. Then T is a compact subset of $(A(K, K), p) [[(A(K, K), u)$ by [12, Theorems 14, 15, p. 232]], so that $\beta(T)$ is compact in $\mathcal{A}(K) \subset (A(K, w)^{A(K)}, p) [\mathcal{A}(K) = (A(K, w)^{A(K)}, p)]$. Therefore, if f is in $A(K)$, $(\beta(T))(f)$ is compact in $(A(K), w)$ $[(A(K), w)]$ and contains $f \circ S$; hence (3).

Conversely, suppose (3) holds in Theorem 1 [respectively, Theorem 2]. Let $P = \bigcap \{\text{cl}(f \circ S) : f \in A(K), p\}$, where $\text{cl}(f \circ S)$ denotes the closure of $f \circ S$ in $(A(K), w) [(A(K), w)]$. Then P is contained in $(A(K, w)^{A(K)}, p) [(A(K, w)^{A(K)}, p)]$ and contains $\beta(S)$. P is compact, so that the closure $\text{cl}(\beta(S))$ of $\beta(S)$ in $(A(K, w)^{A(K)}, p)$ is compact; $\text{cl}(\beta(S))$ is contained in $\mathcal{A}(K)$ since $\mathcal{A}(K)$ is closed. Thus $\beta^{-1}(\text{cl}(\beta(S)))$ is compact in $(A(K, K), p) [(A(K, K), u)]$ and contains S. Hence (1) holds in Theorem 1 [respectively, Theorem 2 by [12, Theorem 5, p. 223, and Theorem 16, p. 233]].

3. **Fixed-point theorems.** Throughout this section let K be a convex compactum, and let S be a semigroup of continuous affine maps on K to K. If k is in K, then $O(k)$ denotes the closed convex hull of $\{s(k) : s \in S\}$.

The function space K^K is a convex compactum under the topology of pointwise convergence. For each k in K, let $k^\wedge : K^K \to K$ be given by $k^\wedge(\varphi) = \varphi(k)$ ($\varphi \in K^K$). Let Z be a separating subfunction space of $A(K)$, and let X be a function space on S such that $f \circ k^\wedge$ is in X for every k in K and every f in Z. Let Y be the linear subspace of $A(K^K)$ generated by $\{f \circ k^\wedge : k \in K, f \in Z\}$. Let $\psi : S \to K^K$ be the
injection map. Then $g \circ \psi$ is in X for all g in Y. From §2, we know that there exists a unique continuous affine map $\rho : M(X) \to K^K$ such that $\rho \circ q_X = \psi$; we have

$$f \circ k^\sim(\rho(\mu)) = \mu(f \circ k \circ \psi) = \mu(f \circ k^\sim)$$

for all f in Z, k in K, and μ in $M(X)$.

Since ρ is continuous and affine and since $M(X) = \text{cl}(\alpha(q_X(S)))$, $\rho(M(X))$ is the closed convex hull of S in (K^K, p); hence for each k in K, $O(k) = [\rho(M(X))](k)$.

The following is a strengthening of Day's fixed-point theorem [3] which asserted only existence of some fixed point in K under the same hypotheses. The result here was essentially proven in [10] by different methods.

Theorem 3. With the above notation, if X is left invariant and if μ_1 is a left-invariant X-mean, then $\rho(\mu) \circ \rho(\mu_1) = \rho(\mu_1)$ for all μ in $M(X)$. In particular, $[\rho(\mu_1)](k)$ is a fixed point in $O(k)$ for every k in K.

Proof. Choose s in S, k in K, and f in Z. We have

$$f([\rho(q_X(s)) \circ \rho(\mu_1)](k)) = f([s \circ \rho(\mu_1)](k))$$

$$= f \circ s \circ k^\sim[\rho(\mu_1)] = \mu_1(f \circ s \circ k^\sim) = \mu_1(f \circ k^\sim \circ L_s)$$

$$= \mu_1(f \circ k^\sim) = f([\rho(\mu_1)](k)).$$

Hence $\rho(q_X(s)) \circ \rho(\mu_1) = \rho(\mu_1)$ for all s in S. Since the map which sends μ into $\rho(\mu) \circ \rho(\mu_1)$ is continuous and affine, and since $M(X) = \text{cl}(\alpha(q_X(S)))$, we have $\rho(\mu) \circ \rho(\mu_1) = \rho(\mu_1)$ for all μ in $M(X)$.

The above theorem is a result on existence of fixed points; it asserts that under correct hypotheses on S and X, the existence of a left-invariant X-mean μ_1 implies the existence of an affine map $\rho(\mu_1)$, which is the pointwise limit of convex combinations of members of S, such that $[\rho(\mu_1)](k)$ is a fixed point in $O(k)$ for every k in K.

Heyneman [9] first showed, under quite different circumstances, that the existence of a right-invariant mean for the action semigroup is connected with uniqueness of fixed points (see also [4, §7]). We modify the argument in the above proof to obtain such a uniqueness result.

With the notation above, if X is right invariant and if μ_τ is a right-invariant X-mean, then one obtains, by computations similar to those in the above proof, that $\rho(\mu_\tau) \circ \rho(q_X(s)) = \rho(\mu_\tau)$ for all s in S. If, furthermore, $\rho(\mu_\tau)$ is continuous on K, then the map which sends μ into $\rho(\mu_\tau) \circ \rho(\mu)$ is continuous and affine, implying that $\rho(\mu_\tau) \circ \rho(\mu) = \rho(\mu)$ for all μ in $M(X)$. Under these conditions, suppose k is in K and x is a fixed point in $O(k)$. Then x is fixed under every member of $\rho(M(X))$ (= $\text{cl}(\alpha(S))$ in (K^K, p)). Also $x = [\rho(\mu)](k)$ for some μ in $M(X)$; so that $x = [\rho(\mu_\tau)](x) = [\rho(\mu_\tau)]([\rho(\mu)](k)) = [\rho(\mu_\tau)](k)$. Thus $[\rho(\mu_\tau)](k)$ is the only possible fixed point in $O(k)$. We have proven the following theorem.

Theorem 4. With the above notation, if X is right invariant, if μ_τ is a right-invariant X-mean, and if $\rho(\mu_\tau)$ is continuous on K, then $\rho(\mu_\tau) \circ \rho(\mu) = \rho(\mu)$ for all μ.
in \(M(X) \), and for every \(k \) in \(K \) the only possible fixed point in \(O(k) \) is the point \([\rho(\mu)])(k)\).

Direct computation shows that the conclusion on uniqueness holds if we assume only that \(\rho(\mu) \) is continuous at the fixed points in \(K \).

For uniqueness of fixed points, we are therefore interested in conditions which insure continuity of the members of \(\rho(M(X)) \). In this direction, we have the following two corollaries to the development in §2.

Corollary 1 (to Theorem 1). With the above notation, the following statements are equivalent:

1. Every member of \(\rho(M(X)) \) is continuous on \(K \) to \(K \).
2. The map \((\mu, k) \rightarrow [\rho(\mu)](k)\) is separately continuous on \(M(X) \times K \) to \(K \).
3. For every \(f \in A(K) \) the set \(f \circ S \) is relatively compact in \((A(K), w) \).

Corollary 2 (to Theorem 2). With the above notation, the following statements are equivalent:

1. \(S \) is equicontinuous on \(K \).
2. The map \((\mu, k) \rightarrow [\rho(\mu)](k)\) is jointly continuous on \(M(X) \times K \) to \(K \).
3. For every \(f \in A(K) \), the set \(f \circ S \) is relatively compact in \((A(K), \| \cdot \|) \).

Kakutani [11] proved that if \(S \) is an equicontinuous group, then there exists a fixed point in \(K \) (see [5, p. 457]). The development above gives the following extension of Kakutani's result.

Theorem 5. Let \(K \) be a convex compactum and let \(G \) be a group of continuous affine maps on \(K \) to \(K \) such that the closure of \(G \) in \((K^K, p) \) consists of continuous functions. Then there is a continuous affine map \(\sigma : K \rightarrow K \) such that for each \(k \) in \(K \), \(\sigma(k) \) is a fixed point in \(O(k) \); furthermore, \(\sigma(k) \) is the only fixed point in \(O(k) \).

Proof. By Theorem 1, \(f \circ G \) is relatively compact in \((A(K), w) \) for every \(f \in A(K) \).

Since for each \(k \) in \(K \) the adjoint of \((k^\omega | G) : G \rightarrow K \) is continuous on \((A(K), w) \) to \((m(G), w) \), it follows that \(f \circ k^\omega | G \) is a weakly almost periodic function on \(G \) for every \(f \) in \(A(K) \) and \(k \) in \(K \). The theorem now follows from Ryll-Nardzewski's result that there exists a two-sided invariant mean for \(\text{WAP}(G) \) [18, Theorems 3 and 4, and Corollary 1].

Corollary 3. Let \(K \) be a convex compactum and let \(G \) be an equicontinuous group of affine maps on \(K \) to \(K \). Then the conclusions of Theorem 5 hold.

4. **Continuity of convolutions.** As additional application of the above development, we give here proofs of results of Pym [16] on continuity of convolutions.

Let \(X \) be a complete, two-sided invariant function space on a semigroup \(S \), and assume that \(X \) is introverted [2], i.e. for every \(\mu \) in \(M(X) \) and every \(f \) in \(X \), the two functions \(L(\mu, f) \) and \(R(\mu, f) \) on \(S \), given by \([L(\mu, f)](s) = \mu(f \circ L_s)\) and \([R(\mu, f)](x) = \mu(f \circ R_x) \) \((s \in S)\), are again in \(X \).
Let $\psi: S \to M(X)^{M(X)}$ be defined by $[\psi(x)](\mu) = \mu \circ L^*_x$ ($x \in S, \mu \in M(X)$), where $L^*_x: X \to X$ is given by $L^*_x(f) = f \circ L_x$ ($f \in X$).

Define a mapping $(\cdot): X \to A(M(X))$ by $(\cdot)(\mu) = \mu(f)$ ($f \in X, \mu \in M(X)$). (\cdot) is a linear isometry and maps constants into constants; hence it maps X onto a closed subfunction space X^\sim of $A(M(X))$. That $X^\sim = A(M(X))$ follows from [14, p. 31].

For each μ in $M(X)$, $\mu^\sim: M(X)^{M(X)} \to M(X)$ is given by

$$\mu^\sim(\phi) = \phi(\mu) \quad (\phi \in M(X)^{M(X)}).$$

For each f^\sim in X^\sim (i.e., each f in X), we have $(f^\sim \circ \mu^\sim) \circ \psi = L(\mu, f)$, which is in X by supposition. Hence $g \circ \psi$ is in X for all g in the linear span of

$$\{f^\sim \circ \mu^\sim: f^\sim \in A(M(X)), \mu \in M(X)\}$$

in $A(M(X)^{M(X)})$. This is precisely the set-up for the development in §3, where K has been replaced by $M(X)$.

There is a unique continuous affine map $\rho: M(X) \to M(X)^{M(X)}$ such that $\rho \circ q_X = \psi$.

Define a binary operation $*$ on $M(X)$ by $\mu * v = [\rho(\mu)](v)$. Since ρ is continuous, $\mu * v$ is continuous in μ for each fixed v in $M(X)$.

By direct computation it can be shown that $*$ is the convolution product as defined in [15] (originally in [8]; see also [2, §6]).

Theorem (Pym [16]). Of the following statements, (1) is equivalent to (2), and (3) is equivalent to (4).

1. $\mu * v$ is separately continuous.
2. $X \subseteq \text{WAP} (S)$.
3. $\mu * v$ is jointly continuous.
4. $X \subseteq \text{AP} (S)$.

Proof. Statement (1) is equivalent to asserting that every $\rho(\mu)$ is continuous, which, by Corollary 1, is equivalent to asserting that $f \circ L_x$ is relatively compact in (X, w) for all f in X, i.e. $X \subseteq \text{WAP} (S)$. Similarly, the equivalence of (3) and (4) follows from Corollary 2.

Note that if we had started by defining ψ by $[\psi(x)](\mu) = \mu \circ R^*_x$, and proceeded to define a binary operation \circ by $\mu \circ v = [\rho(v)](\mu)$, then we would have obtained the "evolution product" as defined in [15].

References

Pennsylvania State University,
University Park, Pennsylvania 16802