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GEOMETRY ASSOCIATED WITH SEMISIMPLE FLAT
HOMOGENEOUS SPACESO)

BY

TAKUSHIRO OCHIAI

Abstract. Our object is Cartan connections with semisimple flat homogeneous

spaces as standard spaces. We study these from the viewpoint of G-structures of

second order. This allows us especially to treat classical projective and conformai con-

nections in the unifying manner. We also consider its application to the problem of

certain geometric transformations.

Introduction. Let M be a manifold of dimension «. We denote by ^\M) the

frame bundle of M, and by A(iF\M)) the set of all linear connections without

torsion on 3P\M). The projective geometry of linear connections is the study of

invariants of projectively equivalent classes in AQF\M)). It is the classical theory

by E-. Cartan that for each projectively equivalent class there corresponds uniquely

a projective Cartan connection [4].

Examining the algebraic structure of projective spaces, N. Tanaka introduced

the notion of a /-system I and the homogeneous space Mi=L(T)/L0(l) [29].

Generalizing the notion of projective equivalence, he gave the notion of /-equiva-

lence in the set A(P) of all G0(0-connections without torsion on a given G0(l)

structure A over M, where G0(l) is the linear isotropy group of M=L(Í)/L0(Í).

Then he showed that for each I-equivalence class there corresponds uniquely a

Cartan connection of type Mi [29].

On the other hand S. Kobayashi and T. Nagano found that the projective

equivalence is also defined by using the bundle &\M) of 2nd order frames of M

[13]. And they reconstructed the above theory of E. Cartan [13].

Our first purpose in this paper is to rebuild the theory of N. Tanaka from the

viewpoint of 2nd order structures, thus generalizing the results in [13]. The Spencer

cohomology group of a graded Lie algebra plays an important role in the con-

structions.

Next, we deal with the geometric tensors associated with our spaces. As one of the

examples, a generalization of Weyl's projective tensors is given. It is proved that its

vanishing is equivalent to the integrability of certain geometric structures.
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Our geometry depends heavily upon the theory of semisimple graded Lie

algebras. §§1 through 7 are devoted to a study of graded Lie algebras and their

Spencer cohomology groups in detail for our construction and theorem.

As a final purpose, we give some applications to the problem of geometric

transformations. We generalize the well-known relationship between the group of

isometries and that of projective transformations of a riemannian manifold with a

parallel Ricci-tensor (cf. [20] and [21]).

The author wishes to express hearty thanks to his thesis advisor Professor T.

Nagano for his encouragement and valuable suggestions. He is also very thankful

to Professor Y. Matsushima, H. Ozeki and N. Tanaka.

Notations. Throughout the paper the following standard conventions have

been adopted. Z denotes the ring of integers. R (resp. C) denotes the field of real

(resp. complex) numbers and F denotes R or C. For a finite dimensional vector

space V over F, we denote by V* the dual space of V. Also we denote with pointed

brackets (x-f) the value of the canonical bilinear mapping b: VxV* ^ F taken

at a e V and/e V*. We denote by APV (resp. AV) the pth exterior product of V

(resp. the sum 2 APV). For a real vector space V, Ve is the complexification of V,

and for a complex vector space V, VR is the restriction of the field to R.

For a point x of a manifold M, T(M)X is the tangent space of M at x. For a

differentiable mapping//* and/* are the differential and the codifferential off

respectively. For a Lie group G, its Lie algebra is written by the corresponding

German letter g. The adjoint representation of G (resp. g) into g is denoted by

Ad (resp. ad). For a vector space Kover F, GL(V) denotes the general linear group,

and gl(l/) denotes its Lie algebra. For a G-principal bundle A—> M, Ra denotes

the right action of an element a of G on P. For an element A of g, A* denotes the

fundamental vector field on P corresponding to A.

1. Outline of the results. We consider the /-system due to N. Tanaka from a

different aspect, that is, from the viewpoint of graded Lie algebras (cf. [26]).

(a) A homogeneous space L/L0 is called flat of order r if the Lie algebra t of L

has a graded Lie algebra structure I = 2Pez QP (gp = 0 if and only ifp^ — 2 or p^r)

such that Io = 2pgo9p lS the Lie subalgebra corresponding to LQ. L/L0 is called

semisimple flat if L is furthermore semisimple. For a semisimple flat homogeneous

space L/L0, we shall prove:

(a-1) the order is two, i.e., I=g_i © g0 © fli;

(a-2) L0 is a semidirect product L0 = G'0 ■ Gx of G'0 and a connected Lie subgroup

Gi such that the Lie algebra of C7Ó and Gj are g0 and gx respectively;

(a-3) Gx is identical to the kernel of the linear isotropy representation, i.e., G'0

is isomorphic to the linear isotropy group G0. By this we identify G'0 and G0.

Homogeneous spaces Mi defined by N. Tanaka are examples of semisimple flat

homogeneous spaces. For those Mi, the above results were proved in [29].

(b) g _ ! is an abelian Lie subalgebra of I. We consider the Lie algebra cohomology
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groups A7(g_1; ad, I) = 2aêo ^"(ö-i, ad, I) of g_j with respect to its adjoint

representation in I. The graded Lie algebra structure I = g _ x © g0 © 81 induces

another decomposition

tf «(fl-i, ad, 0=2 #P,"(9-i> ad, I)   for q ä 0.
pao

The cohomology groups //(gÇj, adc, Ic) = 2 #9(9-n adc, Ie) has been studied by

B. Kostant [16] and Y. Matsushima-S. Murakami [17], using a certain harmonic

theory with respect to the canonically defined inner-product. Using their results,

we shall prove :

(b-1) //2,1(g_!, ad, I) vanishes for almost all L/L0;

(b-2) //2,2(g_1, ad, I) vanishes for almost all L/L0; and we shall give

(b-3) the necessary and sufficient condition for //1,1(g_1, ad, I) to vanish.

The equivalent statements of (b-1) and (b-3) are shown also in [29].

(c) The results of (a) permit us to consider the principal bundle L -*■ LjL0 as a

subbundle of the bundle of frames of 2nd order contact of L/L0. For a manifold M,

we denote by !Fr(M) the bundle of frames of rth order contact [12]. Its structure

group is denoted by Gr(ri) if dim M=n. !F\M) is usually called the frame bundle

of M and G\ri) is isomorphic to GL(n, R). GL(n, R) can be considered as a sub-

group of Gr(n). We shall prove:

(c-1) L0 = G0G1 is a subgroup of G2(ri);

(c-2) L0nGL(n,R) = G0;

(c-3) L -» L/L0 is a L0-subbundle of ^2(L/La) -> L/L0.

(d) Let A be a G0-structure on M i.e., a G0-subbundle of ¡F\M). From a theorem

of S. Kobayashi [12], each <J0-connection on A without torsion gives a G0-sub-

bundle of 3F\M) -+ M. Since G2(ri)^LQ^G0, we have a A0-subbundle of &2(M)

—> M extending the structure group. Thus each G0-connection Y on A without

torsion (if it exists) naturally gives a L0-subbundle 0(0 of ^2(M) -> M. The above

consideration gives the L0-equivalence relation in the set A(P) of all G0-connections

on A without torsions as follows: two elements Y and Y' of A(P) are equivalent if

and only if Q(Y) = Q(Y'). It is easy to see that the above /.(¡-equivalence is equivalent

to the /-equivalence due to N. Tanaka [29]. Then we shall prove:

(d-1) A fixed equivalence class in .4(A) gives rise to a one-to-one correspondence

between the equivalence class of A(P) and //1,1(g_1, ad, Í).

(e) For each L0-equivalence class a in A(P), we denote by Q(a) the A0-sub-

bundle of ¿F2(M) —> M defined by any element of a. Q(a) is called an L0-structure

of 2nd order associated with a. From a theorem of C. Ehresmann we easily see that

there exists at least one Cartan connection on Q(a) of type L/L0, i.e., an infini-

tesimal connection (satisfying one additional condition) on the A-principal bundle

associated with the A0-principal bundle Q(a). We can single out the most natural

one among others by the following results:

(e-1) For each Cartan connection oj on Q(a) its curvature defines a cocycle
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c(oj)x in 771,2(g_i, ad, I) (xe Q(a)) and for each point xe Q(a) its cohomology

class is independent of the choice of a particular a> ;

(e-2) If 7/2,1(g_1, ad, I) = 0, there exists one and only one Cartan connection co

such that c(w)x is harmonic for each point x e Q(a) (see (b)). We call the Cartan

connection in (e-2) the normal Cartan connection of an A0-equivalence class a.

The above construction of normal Cartan connections seems to give a better

interpretation of N. Tanaka's normal Cartan connection of type Mi.

(f) Using the normal Cartan connection, we shall define the Weyl tensor W(a)

of an L0-equivalence class a. W(a) is a tensor of type (1.3) on M. We shall prove:

(f-1) Q(a) —> M is locally equivalent to L-^L/L0 if and only if W(a) vanishes,

provided tf2'2^!, ad, I) = 0.

If 771,1(g_1, ad, I) = 0, then by (d-1) we have the well-defined tensor W(P) for

each G0-structure provided A(P) is not empty. We shall prove:

(f-2) If HU1(Q-!, ad, I) = 0, Go-structure A is locally flat if and only if W(P) = 0.

(g) Let T be an element of an L0-equivalence class a. We denote by Aut (A, a)

(resp. Aut (A, Y)) the group of all G0-automorphisms preserving a (resp. Y). It is

plausible to conjecture: if Y is Ricci-parallel and Aut (A, a)# Aut (A, Y), M is

diffeomorphic to L/L0 and Aut (A, a)=L (up to covering). We shall prove the

conjecture under some restrictive additional conditions:

(g-1) If Aut (A, a) is transitive and irreducible, the above conjecture is true,

(h) Let us point out some connections with classical results. Examples of semi-

simple flat homogeneous spaces are given by:

(1) a projective space and the group of its projective transformations, and

(2) a Moebius space and the group of its conformai transformations.

When L/L0 is a projective space, G0 is GL(n, R) and A0-equivalence is the

projective equivalence. For a projective equivalence class a, our Weyl tensor W(a)

coincides with the classical Weyl's projective tensor [30]. When L/La is a Moebius

space, G0 is CO («). In this case we have H1-1(q_1, ad, f) = 0. Then the Weyl tensor

W(P) for any CO (w)-structure coincides with the classical Weyl's conformai

tensor [30]. It is easily seen that in both cases our conjecture is true from [20]

and [21].

2. Graded Lie algebras and Spencer cohomologies. A finite dimensional Lie

algebra g over F (H= C or R), is called a graded Lie algebra over F if g is a direct

sum of subspaces gp(j? e Z) such that

(2-1). g„ = 0for/7^ -2,

(2-2). [gp, gg]c Qp + q for all p and q,

(2-3). foranxegp(/;äO,x#0), [g_j,x]^0.

Two graded Lie algebras (over F) g = 2 9P and g' = 2 9p are called isomorphic if

there exists a Lie algebra isomorphism </>: g-> g' such that <^(gp) = gp for all p.

By a graded Lie subalgebra f) = 2 i)P of the graded Lie algebra g = 2 gP, we mean a

subalgebra & of g such that f)pcgp. If gp#0, then from (2-3) we have g„#0 for

— 1 ¿qèp. Thus there exists uniquely an integer r such that gp ̂  0 for — lúpúr— 1
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and gp = 0 for p^r. The integer r is called the order of the graded Lie algebra

0 = 2 Op- For two graded Lie algebras g = 2 0P and g' = 2 9p we define their direct

sum g = 2 9p in the following natural manner; § = g © g' (direct sum) and gp =

9p © 9p (direct sum). For a graded Lie algebra g = 2 8p over R (resp. C) we can

naturally define its complexification gc (resp. the restriction of the field g«).

Lemma 2-1. For a graded Lie algebra g = 2 8P> we have

(2-4). g _ ! is an abelian Lie subalgebra of g,

(2-5). g0 is a Lie subalgebra ofq,

(2-6). 2pso 9p is a Lie subalgebra ofQ,

(2-7). 2psfc 9p 's an ideal ofZPio 9P»

(2-8). the adjoint representation adB g0 ofQ0 into g leaves each g„ invariant.

Proof. These are trivial from the definition.

By (2-8) we have a representation adfl g0|g„ of g0 into g„. The representation

adfl 8o|S-i is especially called the linear isotropy representation of g = 2 %P- By (2-3)

this representation is faithful. The graded Lie algebra is called irreducible if its

linear isotropy representation is irreducible.

For a graded Lie algebra (over F) g = 2 9p> the Lie algebra cohomology H(q)(2)

= //(g_!, adB|g_!, g) of the abelian Lie algebra g_! with respect to its adjoint

representation into g is called the Spencer cohomology of g = 2 9p- With the graded

structure in mind, let us recall the definition. Let Cp-"(q) be the vector space of all

gp_!-valued #-forms on  g_! (i.e.,  Cp-"(q) = qp.1 ® A%_x)*) and put C(g) =

2Cp>?(g). Now we define coboundary operator 3: C(g)-► C(g) to be 8Cp-q(q)

cCP-i,3 + i(g)and

(2-9). (3c)(x1,...,x5 + 1) = 2?=+11(-l)' + 1fec(x1,...,xl,...,xQ + 1)] for all ce

C'Kq) and xu ..., xq + 1 e g_j. Then we have S2 = 0. Thus we have the cohomology

//(g) by

(2-10). H(q) = 8-1(0)/8(q).
Putting

(2-11). A^p'"(g) = S-1(0) n Cp-«(g)/ô(C,' + 1-«-1(fl)), AT(g) is naturally isomorphic

to 2 H"-"(q).

Lemma 2-2. We have

(2-12). #°'°(ß)=iß-i.

(2-13). Hp-°(Q) = 0ifpï0,
(2-14). H°-KfÙXtf(g-x)/<k<

Proof. These are easy to see. (2-13) comes from (2-3).

The following are standard facts on Lie algebra cohomologies [25].

(2) We should write 7/(2 9¡>). But we take this notation if there is no danger of confusion.
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Lemma 2-3. Let g = 2 9P be the direct sum of two graded Lie algebras g = 2 9P

and g' = 2 8p- Then we have

Hp-"(ñ) = { 2 hp-s(q) ® Axa'-,)*) © ( 2 As(9-i)* ® H'-Kq'))-
\s+t=q J \s+t=q I

Lemma 2-4. Let gc be the complexification of a real graded Lie algebra g = 2 0P-

Then we have H™(Qc)^Hp-q(Q) <g> C for allp, q.

The Lie subalgebra g0 has a natural representation p on each Cp,9(g). Then it is

easy to see

Lemma 2-5.  We have 8(p(a)c) = p(a)(8c) for all c e C(g) and a e g0.

By the above lemma, there is a natural representation p of g0 into

77(g) = 2 Hp-%a,).

3. Semisimple graded Lie algebras. A graded Lie algebra g = 2 9p over F is

called semisimple (resp. simple) if g is semisimple (resp. simple) over F. Unless

otherwise stated, we assume, in this section, all graded Lie algebras considered are

semisimple (or simple) over F.

Proposition 3-1. The order o/g = 2 8p W 2.

Proof. Take z e g2. Then ad x ad z: g —> g is nilpotent for all x e g. Denoting by

B the Killing form of g, we have A(x, g) = 0. Since B is nondegenerate, we have

x = 0.

Lemma 3-1. The linear endomorphism a o/g = g_i © g0 © gi defined by

a(x+y + z) = -x+y-z  for xe g_1; ye g0, ze gl5

is an involutive automorphism o/g.

Proof. The proof is straightforward.

Lemma 3-2. \Denote by B the Killing form ofq. Then

(3-1). g_i © gi and g0 are perpendicular to each other with respect to B, so that

both A|g_i © g! and A|g0 are nondegenerate;

(3-2). A|g_i=0 and A|g1 = 0;

(3-3). g_! is the dual vector space of qx under the pairing (x, z) ->■ A(x, z)

(xeg_j, zegj).

Proof, (i) Let a be the involutive automorphism of g defined in Lemma (3-1).

Since B is invariant by a, we have

B(x + z, y) = B(a(x + z), a(y)) = B(-x-z, y)   for x e g_l5 v e g0 and z e qx.

Hence g -1 © gi and g0 are perpendicular with respect to B. Thus, since B is

nondegenerate, so are its restrictions to g_! © gi and g0.
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(ii) Let x, x'eQ_1. Then adxadx':g^-g is nilpotent. Hence B(x,x') = 0

proving A|g_1=0. Similarly A|gi=0.

(iii) Let x e g_l5 and assume B(x, gj) = 0. By (3-1) and (3-2), this implies B(x, g)

= 0. Hence x = 0. Similarly, if ze gl5 and A(g_i, z) = 0, then z = 0.

Lemma (3-3). The representation adg g0|g-i, and ad8 g0|gi o/g0 are dual to each

other with respect to the Killing form B.

Proof. This follows from the invariance of B under ad y (y e g0), i.e.

A(ad (y)x, z) = — B(x, ad (y)z)   for xe g_ls ze g^

Lemma (3-4). There exists uniquely an element e in g0 such that

[e,x] = — x   /orxeg_!,

[e, y\ - 0       for y e g0,

[e, z] = z       for z e gj.

Proof [14]. Let E be the linear endomorphism defined by E(x)= — x for

xBQ-i, E(y) = 0 for y e q0 and E(z) = z for z e gx. Then it is easy to see that A is a

derivation of g. Since every derivation of a semisimple Lie algebra is inner, there

is a unique element e in g such that A=ad e (the uniqueness follows from the fact

that g has no center). Let a be the involutive automorphism defined in Lemma (3-1).

We can easily see that ad (a(e)) coincides with E. Hence a(e) = e proving e e g0.

Corollary (3-1). An abelian Lie subalgebra a of a, containing e (of Lemma (3-4))

is contained in g0. In particular there exists a Cartan subalgebra b o/g contained in

go-

Proof. Take an element a = x+y + z (a e a, xe g_x, ye g0, ze q¡). Then 0 =

[e,a] = [e,x+y + z]=—x + z. Hence x = 0, z = 0, i.e., acg0. Since ad e is F-

diagonalizable, there exists a Cartan subalgebra I) containing e. h being abelian,

we get bc0o.

Proposition (3-2) [29]. (i) Let g=$i ©• ■ •© $r be the decomposition of g into

its simple factors. Then

8,*(fl,t0 %) © (Bo n S,) © (Bi © S,)

an*/ Qfy = 2 (gP <~t 9y) is a simple graded Lie algebra.

(ii) 9 = 2 9p is isomorphic to the direct sum of&J = '2(qpnSfj)(j=l,...,r).

Proof. Take an element a = x+y + z (a eQfy, xe g_1; ye g0, z e Bi)- Then Qf,-3

[e, a]=-jc + z and ^3 [e, [e, a]] = x + z. Hence »i = (g_1 n 9,) © (g0 n Of,) ©

(gj n Öy). The rest of our assertions are straightforward.

Proposition (3-3). A graded Lie algebra g = 2 9p is simple if and only if it is

irreducible and the order is > 1.
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Proof. See [14], [23] or [29].

Corollary (3-2). We have B(x, z) = 2(the trace of ad [x, z]\q-¡) for all x e g_j

and ze gj.

Proof [29]. 2(the trace of ad [x, z]\q1) = B([x, z], e) = B(x, [z, e]) = B(x, z).

Corollary (3-3).  We have [g_i, gi] = go and g0 is a reductive Lie algebra.

Proof. From Proposition (3-2), clearly we can assume that g is simple. Then, by

Proposition 3-3, g0 has a faithful irreducible representation. Therefore g0 must be

reductive. It is easy to see that fl_i © [fl-i. fli] © Öi is an ideal of g. Therefore we

have [8-1, fli] = Où-

Proposition (3-4). o = g_i © g0 © gi and g' = g'_i © gó © gi are isomorphic in

the sense in §2 ;/ and only if g0 © Qi and g0 © gi are isomorphic as abstract Lie

algebras.

Proof. Let <f>: g0 © gi -*■ g0 © gi be an isomorphism. We denote by c and c'

the center of g0 and g0 respectively. Then clearly [g0, g0] © (c © gi) and [g0, g0]

© (c' + 0i) are the Levi decomposition of g0 © gx and g0 © gi respectively. Since

the Levi decomposition is unique up to conjugation, we can assume 4>([q0. go])

= [9Ó> 00] and </>(c © gj) = c' © gi, changing </> if necessary. Then we have

¿(0i) = <¿([c © Oi, c © Bil) = [e' © fli» C © 0Í] = fli.

We shall show that for a nonzero element y of c the c'-component of </>(y) is not

zero. In fact, otherwise, for anyzeg1? we have </>([y, z]) = [<f>(y), </>(z)] = 0. Hence

[y, z] = 0 since <p(fli) = fli. From this we get y = 0. We define an isomorphism

</>':c^c' by </>(y) = (f>'(y) mod gi. Then we define a new mapping </>"'■ [flo» Oo]

©c©0i-^[0Ó, OÓ]©c'©oi by <p"(x+y + z) = <p(x) + </>'(y) + cp(z) (x e [9o, 0O],

yet and z e Qi). It is easy to see that <f>" is an isomorphism from Oo © 0i onto

00 © 0Í such that 0'(0o) = 0o and <£"(0i) = 0i- Therefore we can assume that our

isomorphism </> satisfies <£(oo) = 0Ó and <£(Qi) = gi- Using the duality of o_! and Qx

(Lemma (3-2) and Lemma (3-3)), we can extend </> to a linear endomorphism from

0_! onto g'_!. In fact, it suffices to show ^([x, z])=[</>(x), </>(z)] for xe g_1; z e qx.

We denote by B' the Killing form of g'. For y e g0, we have

A'(¿([x, z]), <Ky)) = B([x, z], y) (easy to see)

= A(x, [z, v]) = B'(<f>(x), <f>([z, y])) (from the definition)

= B'bKx), Wz), </>(y)]) = B'Wx), fa)}, </>(y))       (Lemma 3-2).

Corollary (3-4). g = g_j © g0 © Oi and g' = g'_i © g0 © gi are isomorphic if

and only if g0 and g0 are isomorphic and their linear isotropy representations are

equivalent.

Proof. This is a direct consequence of Proposition (3-4).



1970] SEMISIMPLE FLAT HOMOGENEOUS SPACES 167

Lemma (3-5). Let g = g_i © g0 © gi be real simple, If gc is not simple, there

exists a complex simple graded Lie algebra h = h_1©hQ©hl such that & = hR.

Further gc= fi © h.

Proof. Since gc is not simple, it is known that g is a complex simple Lie algebra.

We shall show g0 and gi are complex subalgebras. Let [g0 © gj be the minimal

complex subalgebra of g containing g0 © gi and {g0 © gj be the maximal complex

subalgebra contained in g0 © q1. Since g = g_i © g0 © 8i is irreducible, [g0 + 9i]

is either g0 © gj or g. In the first case g0 © gi is a complex subalgebra of g. Now

suppose [g0 + gi] is g. Since {g0 + gi} is an ideal of [g0 + gi] (see the next lemma),

[flo © 0i] = O, i.e., 8 = (9o © 9i) © V- K0o © 8i)- This is absurd from the con-

sideration of dimension (cf. (3-3)). Thus we have shown that g0 © gx is a complex

subalgebra of g. Since gi={j e g0 | [g, j]cg0}, gi is also a complex space. The rest

of the proof is straightforward.

Lemma (3-6). {g0 © gj is an ideal of [g0 © gj.

Proof. Let x e {g0 © gj and y e g0 © q±. Then for an arbitrary complex number

A, À[x, y] = [Ax, y] e g0 © q±. Therefore [x, y] e {g0 © gj. Now let z e [g0 © Bi]-

Then z=z1 + \/—l z2, where z1; z2 e g0 © g1; and we have

[x, z] = [x, zx + V- 1 z2] = [x, zj-h V-1 [x, z2] e {g0 © gj.

Proposition (3-5). There exists an involutive automorphism a of g such that

<K0-i) = 0i»        a(.Qo) = 8o,        <K9i) = 8-i»

and the bilinear form B* on 8 defined by B*(x, y) = — A(x, o(y)) (x,yeq and B is

the Killing form of g) is positive definite or positive definite hermitian symmetric,

according as F=R or F=C.

Proof. See [14] or [29].

Lemma (3-7). Let B = 8-i © 8o © 8i be a simple graded Lie algebra over F. Let h

be an irreducible subalgebra o/g0 (c8K0-i))- If there exists a nonzero element z in

gi such that [g_i, z]<= h, then fi is necessary identical to Bo-

Proof. Let ih be {z' e q1 \ [g_1; z']<=h}. Then clearly g_! © h © h1 is a graded

Lie algebra. Since the linear isotropy representation is irreducible, g_i © i) © I)i

is simple by Proposition (3-3). Then by Lemma (3-2), the dimension of ih must be

equal to that of g_x. In particular we have l)1 = Q1. Then by Corollary (3-3), we see

i)o = 8o-

Proposition (3-6). Let 0 = 0-i © fl0 © 0i be a simple graded Lie algebra over F.

And let ê be a subalgebra of the Lie algebra ß such that

(1) dim 8/(fl0 © Bi) = dim g_1(
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(2) the natural representation ofèn (qq © Qi) into i/(g0 © Q.J is irreducible,

(3) sngi#{0}.

Then § is necessary identical to g.

Proof. We put i) = § n (g0 + g0/§ n g^ Then fi can be considered as a subalgebra

of g0 satisfying the condition of Lemma (3-7). Therefore

8 r\ (Oo © 9i)/3 n g,. = g0   and   ê n gx = gj.

Thus we have â=>g0. Hence ê = g by the condition (1).

4. Harmonic theory in the Spencer cohomologies (cf. [16]).    Let g = g~i ©go

© fli be a semisimple graded Lie algebra over F. We define a formal adjoint

operator 8*: C(g)-* C(g) of a to be 8*CM(g) -> Cp + 1 •«"%), and

(4-1). (S*c)(x1,...,x9_1) = 2i[Zi, c(Xi,x1,...,xQ.1)] for all ceC™(g) and

xl5..., xq_! e g_!, where {A"¡} is a basis of g_j and {Z<} is the dual basis of {X¡} in

gi (cf. Lemma (3-2) and Lemma (3-3)). It is evident that 8* is well defined (i.e.,

independent of the choice of the basis {A'i}).

Lemma (4-1). We have 8*(p(a)c) = p(a) 8*c for c e C(g) and a e g0, here p is the

natural representation of g0 into C(g).

Proof. This is easy to see (cf. Lemma (3-3)).

We define the Laplacian □ by V2=8*8 + 88*. Then D is a linear endomorphism

of Cp-a(g) for each p,q. Then the kernel of D: Cp'"(g)^ Cp-"(g) is denoted by

^"'"(q) (3) and an element of ^fp-"(g) is called a harmonic form.

Lemma (4-2). We have p(a) D c = \J(p(a)c) for c e C(g).

Proof. This follows from Lemma (2-5) and Lemma (4-1).

Proposition (4-1). We have

(4-2). 8Cp'Xq) r\ Jtp-1-"+1(Q) = {0},

(4-3). Hp-%Q)?œp-*(Q).

Proof. To prove this it suffices to show the existence of an inner product (resp.

hermitian inner product) ( , ) on C(g) (according as F=A or F=C) such that 8*

is the adjoint operator with respect to the inner product ( , ) i.e., (8c, c') = (c, 8*c)

for c, c' e C(q) [16]. For that purpose we make use of the bilinear forms B* in

Proposition (3-5). We define an inner product (resp. hermitian inner product) in

C(8) by

(4-4). (c, c') = (l/q\) 2 B*(c(Xh,..., Xiq), c'(Xh,..., Xiq)) for all c, c' e Cp-"(q),

where X¡ is an orthonormal basis of g_! with respect to B*. We put (c, c') = 0 for

c e Cp-"(g), c' e Cp'-'>'(q) (p^p' or q¥=q'). Now we prove

(3) We should write Jfv'"(2 0P), but we adopt this notation if there is no danger of confusion.
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(4-5). (8c, c') = (c, 8*c') for c,c'eC(g). In fact, for ceCp-Q(Q) and c'eCp-1,<, + 1(9),

we get

<<dc> c') - -(„Tul 1 ^X*,!, • • •» XiqJ, o.c'(Xh,..., Xiq^))(9+D!

1
2 2 (- i)'B([c(Xh,..., Xip ..., Xiq+1), Xtl],

(«?+!)!
a-c'(Xh,...,Xiq+1))

= -(^Tv 2 2 (-i)'w^ ■ •.. K ■ ■ •. *.♦,).
a^c'O^,...,*^)])

= (fl+TT! 2 2 ^W-^'i» •••»-*%*•• •» xiq +1),
°[-oXi,, c'(xit, xh,..., xh,..., xiq + 1)])

= (c, 8*c').

Here we remark that { — aX^ is the dual basis of {Z¡}.

5. The Spencer cohomologies of complex simple graded Lie algebras (cf. [16],

[17], [18], [19]). To obtain the Spencer cohomologies of semisimple graded Lie

algebras over F, we have only to obtain that of complex one (see Lemma (2-4)).

Then by Lemma (2-3) and Proposition (3-2), it is sufficient to consider complex

simple one.

In this section 8 = 8-i ©8o ©8i denotes a complex simple graded Lie algebra.

And e is the elements of Lemma (3-4).

Lemma (5-1). We have

(5-1). 8o = Ce©[fl0, b0],

(5-2). [g0, g0] iß a semisimple Lie algebra.

Proof. This follows from the fact that g0 has an irreducible faithful representation

(cf. Proposition (3-3)).

From now on we fix once for all a Cartan subalgebra h of g such that §0=> f> 3 e

(cf. Corollary (3-1)). We denote by A the set of nonzero roots of g with respect to

h. For a e A, ga denotes the eigenspace of a. The restriction of the Killing form B

of g onto f) is still nondegenerate. Therefore we define Ha for each a e A by

B(Ha, H) — a(H), He ft. Let h0 be the real subspace of h spanned by {Ha | a e A}.

It is known that h0 is characterized as the maximal real subspace of h on which

all a e A has real value. Thus we have e e fi0. The restriction of B onto h0 is

positive definite. Thus we introduce an inner product ( , ) in h*. Then (a, ß)

= B(Ha,HB)(a,ßeA).

Since h is contained in g0, A is a disjoint union of three subsets A_1; A0 and Ax

such that

0-1 =   2   9a»        0o = I)+ 2 9i»        0i =   2 9r-
ash -1 0eAo yeAi

Lemma (5-2).  We have A_x= - Ax.
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Proof. This follows from Lemma (3-3).

Let gu be a real compact form of g such that gu C\ h = \/— 1 f)0- Let a be the

conjugation of g with respect to gu. Then a(Ha)= —Ha for all a e A. Thus we have

a(Qct) = Q-a- Therefore we have

<K0-i) = 0i'       a(0o) = 0o,       <*(9i) = 0-i-

Remark (5-1). Since the bilinear form B* defined by B*(x,y)= —B(x, o(y)) is

hermitian symmetric, our a satisfies the conditions in Proposition (3-5).

Lemma (5-3). For a e A_x u A1; we can choose a root vector Xa e ga such that

(i) {Xa}aeA_1 is an orthonormal basis o/g-i with respect to B*.

(ii) {A"_a}aeA_1 is the dual basis of{Xa}aeA_1 in gi with respect to B.

(iii) <j(Xa)=-X_a.

(iv) [Xa,X_a] = Ha.

Proof. This follows from the fact that for a, ß e A_± u Au B(Xa, Ai) = 0 unless

«+j8 = 0, [Xa, X_a] = B(Xa, X„a)Ha, and <x(ga) = g_a.

For the matter of convenience, we denote by {au ..., aN} be the element in A^

We write X¡ and X{~ instead of Xai and X_a¡ respectively. Since CT(g0) = g0, we can

choose a basis {Ta}a = i,..„r of g0 such that B(Ya, Yb)= — 8ab. We fix once for all

those A¡, Ya. Then it is easy to see that Laplacian □ : Cp,"(q) ->- Cp,,(g) is expressed

by

(Dc)(Xh, ...,XU) = f [Xk[Xkc(Xh,..., Xfq)]]
!c = 1

(5-3) n

+ 2  Î C" l>"+1a*i.. Xk]c(X-k, Xh, ..., A\,. • -, Xiq)].
k = l u = l

For an x e g1; e(x) is the operator of exterior multiplication by x on Ag1; and

for Xj¿, i(Xk) is the operator on Agx defined as usual by the formula

p

i(Xk)(Zl- ■ -zp) =  2 (-1)"<^, zuyZl A ■ • • A fu A • • • A zp.
Ti = l

We denote by ad+ (resp. ad"+) the representation of g0 into Agi (resp. A'gj).

Lemma (5-4). We have

(5-4) ad + (Ta) = 2 e([Ya, Xk])i(Xk).
k = l

Proof. It suffices to show this on A1g1 = g1.

Now for Xj e gi,

(2 <[Ya, X^KXaVx,) = 2 B(Xk, X,)[Ya, Xk] = [Ya, X}] = (ad+ Ta)(A-y).
\fc=l / k=l

We put [Xu A,] = 2 Cai¡Ya (i,j=\, ...,N). From the relation

B([XU Ya], X,) + B(Ya, [Xit A";]) = 0,

weget[7a,A-i]-=2f=1CaiiA'J..
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We use the following two nontrivial lemmas without proof (see [17]).

Lemma (5-5).  We have

(5-5). e = 2^aeiilHa,

(5-6). 2Ui (adUT0))2= -2?=i ad"+ ([Xk, Xk])= -(q¡2)\ on A«9l,

here 1 denotes the identity map.

Since g_! and gx are dual with each other, we can identify Cp-"(q) = qp-1 (g>

A'ig.i)* with g,.! ® A«fll by

c e Cp-"(Q) h> 1 2 c(Xh,..., X!q)Xh A • • • A Xiq.

Then the Laplacian □ can be expressed on g ® Agj by

N N

(5-7) D = 2 ad **-ad x* ® 1+  2   ad [** r*l ® £WTO-
fc = l fc,u = l

Lemma (5-6). AAe Laplacian □ /ios the following expression on g ® Agx:

(5-8) D = 2 ad (**) ad (**) ® 1 + 2 ad ( y") ® ad ♦ (y«)-
k-l a=l

Proof.

2 ad Pf„ A-k] ® <A-u)/(^)
fc,u = l

= - 2 CjW ad ( Ta) (8) e(A'u)/(Xi)       (see the remark after Lemma (5-4))
a,k,u

= - ^ad(Ya)®e(CaküXu)i(Xk)

= 2 ad (Ya) ® e[Ta, Tfc]/(^) = 2 ad T0 ® ad+ (TJ    (by Lemma (5-4)).
a,k a

Let now c be the element of the universal enveloping algebra S of g defined by

c= 2 (****+*■***)-2 ̂2.
fc=l a=l

The element c is called the Casimir element of S and is in the center of $. We put

c' = — 2o T2. Then c' is an element in the center of the enveloping algebra S' of g0.

Extending the representation of g (resp. g0) to those of S (resp. S"), we get the

following formula.

Lemma (5-7). The Laplacian □ has the following expression on g.

(5-8) 2D = ad (c) ® l-(ad ® ad+)(c') + ¿(ad ® ad+)(e).

Afere ad ® ad + denotes the product of two representations ad and ad +.
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Proof. 2 2 ad (A^.) ad (Aj) = ad (c)-ad (c') + 2 ad ([Xk, Xk]). On the other hand

(ad ® ad+)(ya) = ad (Ya) ® 1 + 1 ® ad+ (7a). Thus

((ad ® ad+)(70))2 = (ad 7J2 ® 1 +1 ® (ad + (Ta))2 + 2 ad (Ya) ® ad+ (7a).

Hence

2 2ad(ya)®ad+(Ta)

= 2 ((ad ® ad + )(Ta))2-2 (ad (Ta))2 ® l-£ 1 ® (ad+ (Ta))2

= -(ad ® ad+)(c') + ad (c') ® 1 + 2 1 ® ad+ [A-,,, l"f]

(see Lemma (5-5)). From this we have a desired expression.

Now we choose, once and for all, an ordering of the roots such that the roots

belonging to Aj are all positive. The existence of such an order is well known.

Let 0 be the set of all positive roots a of g such that gac g0. Then A+ = Aj u 0 is

the set of all positive roots. We denote by {yl5..., y0} the set of all simple roots.

Then we know that we may assume yj e ax and y2,..., y¡ e 0 [9]. Then y2,..., y,

are also simple as the roots of the complex reductive Lie algebra g0. Under these

notations, if p (resp. t) is an irreducible representation of g (resp. g0) with the lowest

weight A' (resp. p.'), then p(c) and r(c') are scalar operators which is known to be

given by

(5-9). P(c) = {(A', A')-Z«a* (A', «)H,

(5-10). t(c>{(>',/O-!*••>', 0H-
Let

(5-11) g ® Ag! = 2 »r» U?

he a decomposition of the g0-module g ® Aqx into direct sum of irreducible go-

modules U(- where f denotes the lowest weight of the irreducible representation

t{< of g0 into Uf: Since e is in the center g0, the last term in the expression (5-8) is

a scalar operator on each Ut: We denote by A' the lowest root of g and put

8 = i 2<*eA+ *■

Proposition (5-1) (B. Kostant [16]). We have

(5-12) D | Uf = {(A' - 8, A' - 8) - (f - 8, f - S)} • 1.

Proof. This follows from (5-8), (5-9), (5-10) and the above remark.

Corollary (5-1). Let g ® Agj = 2 n¡¡; U¡¡- be as above. Then we have

JT(fl) =        2       *rVe-

Here |A'-S|2 = (A'-S, A'-8).

Proof. This follows from proposal (5-1) and Lemma (4-2).

For a subset O of A, we denote by <<£> the sum of the roots belonging to O.
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Let W be the Weyl group of g. And for an element T of W, we put <Í>T = T(— A+)

n A+. Put W1={Te W\ OjcAJ. Let £' be the lowest weight of an irreducible

representation pc- of g with the representation space V. And let

(5-13) V ® ASl = 2 IfUf

be a decomposition of the g0-module V ® Agj into direct sum of irreducible

g0-module U(,. For Te W1, we put VT = TC + ($>T). Clearly £T is a weight of the

g0-module V ® Agx.

Lemma (5-8). We have

(1) Let r¡ be a weight of the %Q-module V ® Ag1; then |A' — 8\ ä |r; —8| a/w/ the

equality holds if and only if there exists Te W1 such that r¡ = l'T.

(2) The map T\-+ t,'T is a bijection of W1 into the set of the lowest weight £'

appearing in the decomposition (5-13) and satisfying the equality |A' —S| = ||' —S|.

Proof. See [19].

Proposition (5-2) (B. Kostant [16]). We have ^(8) = J.Tew1UA'T. Here A' is

the lowest root o/g and A'T — TA' + (<S>T}.

Proof. This follows from Corollary (5-1) and Lemma (5-8).

Let n(T) denote the number of the root belonging to <bT.

Corollary (5-2). We have 2p ^p,9(8) = 2r6w1.n(D=5 UA.r

Proposition (5-3) (B. Kostant [16]). The ^-module A%x and A"q1 decompose

into a direct sum of ^-irreducible modules

Agi =   2  u«>t>>    A"9i =        2        u<*t>-

Proof. This follows from Lemma (5-5) and Lemma (5-8).

Let g = 2wV8«' be a decomposition of the g0-module g into direct sum of

irreducible g0-module g{. with the lowest weight £'. Combining this with the

decomposition Ag1 = 2rsw1 U<<sT>, we have

g ® Agj = 2 2  m«'9í' ® u<°t>-

Lemma (5-9). Suppose that there exists an element c e gr ® U<9t> such that

c^O and TJc = 0. Then $' = TA'.

Proof [19]. By the assumption, the intersection of g?- ® U<<tT> with 2rswx Ua-t

is not empty. Therefore there exists S e W1 such that UA- is contained in g{- ®

t/<«T>. Then A's is a weight of the g0-module g{- ® U<i>Ty and hence there exists a

weight v in g{. and a subset $ of Ax such that A's = v + (<&). Then by Lemma (5-8)

we get v = SA' and Í> = <DS. We remark now that A_1(0)c:0 for an A e W1.

Therefore (SA',ß) =(A',S'1ß)^0 for all ß e 0 because A' is the lowest root of
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g0. It follows from this that v = SA' is the lowest weight in gr and hence £' = SA'.

On the other hand, since (^s) is the lowest weight in t/<0s>, we have «^s), j8)¿0

for j3e0. Therefore, as <<PS> is a weight in U<<tr>, we get <(I)t> = <<I)s>. Then by

the lemma, we get T=S.

Corollary (5-3) (Matsushima-Murakami [18]). Let qai be the numbers of the

roots in {a e Ax | <a, //> >0}, here p is the lowest root in Ax. Then we have

H2-"(Q) = 0    ifq<q&i.

Proof. By Proposition (4-1) and Corollary (5-2), we have

H2-%q) = 2te2-\i) = 2 ^-"(Q) nSi® ABl.
p

By Lemma (5-9), 2p -^"'"(o) ^ 0i ® <7<*T>^0 only if p.' = TA' and n(T) = q. If

(a,p.')>0 (aeAJ, then 0<(a, p') = (a,TA') = (T~1a, A'). Since A' is the lowest

weight, F-1c¡<0, i.e., a e <Dr. Thus q&Aun(T).

Lemma (5-10). IfH1,1(o)^0, then g0 has an element of rank 1, g0 being considered

as the subalgebra of gl(g _ x).

Proof. Suppose 7f"1,1(g)^0. Then g0 ® gt contains UA'T for some Fe W1.

Taking an eigenvector of the lowest weight A^ = FA' + <<J>T>, we can assume Jf ia(g)

contains an element of the form y ® z (y e g0, z e gj). Since 8(y ® z) = 0, for

x, x' e g_!, we have

A(x, z)[y, x'] = A(x', z)[y, x].

Taking x' as A(x, z)=l, we have [y, x] = B(x, z)[y,x'], i.e., y is an element of

rank 1.

Remark. Simpler proof may be obtained using Guillemin, Quillen, Sternberg,

Classification of the irreducible algebras of infinity type, J. Analyse Math. 23 (1967).

6. Semisimple homogeneous spaces. Let L/L0 be a connected homogeneous

space on which a semisimple Lie group L acts effectively and transitively. Here L

is not necessary connected. L/L0 is called a semisimple flat homogeneous space if

the Lie algebra I of L has a graded Lie algebra structure I = g_i © g0 © gi such

that g0 © gx is the Lie algebra of L0. We call the graded Lie algebra t = g_i © go

© g». the associated graded Lie algebra of a semisimple homogeneous space L/L0

(cf. Proposition (3-4)). Let Gx (resp. G-x) be the connected Lie subgroup of L

corresponding to qx (resp. g_i). We define G0 as the normalizer of g0 in F0> i-e.,

G0 = {a e L0 | Ad (a)(g0) = g0}.

Lemma (6-1). The exponential mapping exp: Bl -*■ Gx and exp: g_! -*■ G_x are

bijective.

Proof. Since qx is abelian, exp is surjective. Let n be the kernel of exp: qx -*■ Gx.

Since n is discrete we have [g0, n]=0. This is contradiction (see Lemma (3-4)).
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Lemma (6-2). G0 is identical to the normalizer o/fl-i in L0, i.e.,

G0 = {aeL0 | Ad(a)(0-i) = 0-i}-

Proof. Let G'0 be {aeA0 | Ad (a)(g_ j) = g _ i}. Take an element a in G0. Since

Ad (a)(g0) = 8o and Ad (a)(8i) = 9i, (fli = {* £ 0o © 0i | [0, *]c0o}) by the argument

in Proposition (3-4), there exists an isomorphism <£ of g such that </>(g-i) = g-i

and 0|go + gi. = Ad (a)|go + 8i. Then <f>- Ad (a)-1 is, in particular, the identity on ß0.

Since fl0 contains a Cartan subalgebra h of g, there exists an element H of h, such

that <j>■ Ad (a)~l = exp ad H. From this we have Ad (a)(g_1) = g_1. Take aeG'a,

then

Ad(a)(g_! © gx) = 9-i©0i-

Since g0 is the orthogonal complement of g_x © q± with respect to the Killing

form B, thus Ad (a)(g0) = go since Ad (a) leaves B invariant.

Lemma (6-3). We have G0 n G1={id}.

Proof. Let Z e gj be such that exp Z eG0 n Gt. For Ieg_b

Ad(expZ)(A-) = X+[Z, X]+\[Z[Z, X]].

Since Ad (expZ)(g_1)c:g^1, we have [Z, g_J = 0. This is a contradiction (see

(2-3)).

Lemma (6-4). We have L0 = GQ ■ G1.

Proof. Let c be the center of g0. From Lemma (5-1) we can easily see that

ad c (ce c) is semisimple. From the argument in Proposition (3-4) for aeL0 there

exists an element Z in gj such that Ad (exp Z) Ad (a) preserves g1; gi + c and

[8o> 8o]- From the above remark we see Ad (expZ) Ad(a)(c) = c. Thus we have

Ad (expZ) Ad (ö)(Bo) = 8o- Then expZa e (70 i.e., L0 = GVGo = G0-C7i.

Corollary (6-1). L0 is the semidirect product of G0 and Gx.

We have a natural representation / of A0 into g_t (so-called the linear isotropy

representation of A0). It is defined by

l(a)x = Ad (a)x mod (g0 © gi)   for a e A0-

Lemma (6-5). G1 is identical to the kernel of I, or equivalently I is faithful on G0.

Proof. It is clear that G± is contained in the kernel of /. Take ae G0 such that

Ad(a)|gj is the identity. Then by Lemma (3-3), Ad(a)|g_! is also the identity.

Since go=[0-i, BiL Ad (a) is the identity on I, i.e., a commutes with the identity

connected component of L. This is a contradiction because the operation of L is

effective.

The group G0 is called the linear isotropy subgroup of the semisimple flat homo-

geneous space L/L0.
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7. Classification of simple graded Lie algebras. We can classify all semisimple

graded Lie algebras over F (F=R or C). By Proposition (3-2), we have only to

classify simple graded Lie algebras. This has been done in [14]. And the value

<7ad (cf., Corollary (5-3)) for complex simple Lie algebras has been computed by

A. Borel [1]. We here only write the table. For the details, see [14].

Let K be the field R of real numbers, the field C of complex numbers or the field

Q of quaternions. In a natural way, Ac C^ Q. For each element x of K, we define

the elements x and x as follows.

If x = Xo + x1/ + x27 + x3Ä: e Q with x0, xu x2, x3 e R. Then

X == Xq   - X± I     X2J     XqK} X == Xq ~\~ X± l     X<¿J     XßK.

We use the following notations.

(1) gl(n; K) = {all nxn matrices over the field A"}.

(2) 8I(n; A) = the semisimple part of gl(«; A").

(3) èo(p, q;K) = {Aeql(p + q;K)\ tAIp¡Q + IPiqA = 0}, where

= (Ip       °)
'■"     \0    -ij

èo(n;K) = êo(n,0;K).

(4) u(p,q; K) = {A e QÏ(p+q; K) | ^7^ + 7^=0}.

u(n;K) = u(n,0;K).

(5) M(p,q; K) = u(p,q; K) n ël(p+q; K).

(6) âp(«; K) = {A e gl(z«; A") | tAJ+JA = 0}.

I. Complex simple graded Lie algebras g = g_i + go + 9i-

type Wpätfäl) IIP(pä2) IIIp(/>62) IV„ VI

0

0o

<7ad

$l(p;C) + Zl(q,C) + C

p+q-1

3o(2p; C)

tikp; C)
2p-3

3*>(«; C)

fll(«; C)

p

$0(p+q + 2;C)

èO(p + q;C) + C

p+q-i

âo(lO:C) + C

11

£f + C
17

II. Real simple graded Lie algebras 0 = 0-1 +0o + 0i-

K= R K= C A" = Q

g èl(p+q;R)

g0 èi(p;R) + èKq;R) + R

9

9o

g âo(«, n)

g0 gi(«;A)

g èo(p+l,q+l)

g0 èo(p+q) + R

9 êq(n;R)

g0 g!(«;A)

èl(p+q;C)

èï(p;C) + êl(q;C) + C

êu(p, p)

èl(p;C) + R

§o(2«; C)

gl(n; C)

8oQ,+$ + 2;C)

èo(p+q;C) + C

H(n;C)

gi(«;C)

âu*(2/7 + 2i7)

êu*(2/j) + êu*(2g) + A

ëo*(4n)

u*(2n)

êq(«, «)

3u(2«) + A
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The above gives the table for classical Lie algebras. The table for exceptional

Lie algebras is given as following. For the detailed definition, see also [14].

8 Eh EC Ei
g0 8o(5.5) + Ä 3o(10; C) + C 3o(1.9) + Ä

8 Ek E$ A?
g0 El + R EÇ+C Et + R

Proposition (7-1). Let 8 = 8-i © So © 8i be a real simple graded Lie algebra

such that g is different from §1(2, R) and 81(2, C), then A72,1(s) = 0.

Proof. This follows from Lemma (2-3), Lemma (3-6) and Corollary (5-3).

Proposition (7-2). Let g = g_i © g0 © gi be a real simple graded Lie algebra

such that g and g0 are different from

g     ($l(p+q;R) êï(p+q;C) 3u(l, 1)

g0   èl(p;R) + ïl(q;R) + R èl(p;C) + èl(q;C) + C èl(l,Q+R

p+q è 3 p+q ú 3
g     èo(p + \,q+l) èo(p+q + 2,C)

g0   èo(p,q) + R èo(p+q,C)

p+q Ú 3 p+q ^ 3.

Then H2-z(q) = 0.

Proof. This follows from Lemma (2-3), Lemma (3-6) and Corollary (5-3).

Proposition (7-3). Let ß = fl-i © g0 © 0i be a real simple graded Lie algebra.

Then H1-1(q) = 0 except the cases Q = êl(p+l,R),Q0 = èl(p,R) + RandQ = èï(p+l,C),

Q0 = èl(p,C) + C.

Proof. This follows from Lemma (5-11) and the table above.

8. Frames of higher order contact. Let M be a manifold of dimension n. Let

U and V be neighborhoods of the origin 0 of Rn. Two local diffeomorphisms

f:U^-M and g: V'-> M such that/(0)=g(0) give rise to the same frame of rth

order contact (or r-frame) at x=f(0)=g(0) if they have the same partial derivatives

up to order r at 0. Here 1 áráoo. The r-frame given by/is denoted by jr(f). We

denote by !Fr(M) the set of all r-frames of M. It is a principal fibre bundle over M

with the natural projection -n; ̂ (Jr(f))=j(0). We shall describe its structure group

and the right action of the structure group on 3Fr(M).

Let Gr(ri) be the set of r-frames of Rn at 0, i.e., Gr(ri) = {jr(g) e ^r(Rn) \ g(0)=0}.

Then Gr(ri) is a group with the natural multiplication defined by jT(g)jr(g')

=jr(g o g'). The group Gr(ri) acts on ¿Fr(M) from the right by jr(f)-jr(g)=jr(f° g)

for jr(f) e¿Fr(M) and j'(g) e Gr(n). It is easy to verify that !Fr(M) is a principal

fibre bundle over M with group Gr(ri). ̂ r(M) is called the bundle of r-frame of M.
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Let h : M -*■ N be a diffeomorphism from M onto a manifold TV. Then h induces

a bundle isomorphism hin: &r(M) -*■ ¡Fr(N) defined by

WOO) = 7r(« °/) 6 F\N)   for/(/) e &\M).

We call n(r) the rth prolongation of A.

From now on we shall be mainly interested in ^2(M) and !F\M). We have a

natural projection a: G2(n) -> G^AO and ¿>: ¿F2(Af) -> ^(M) defined by a(/2(«?))

-/Hf ) CA.?) s G2(«)) and v(j2(f))=j\f) (j2(f) e F2(M)).

Lemma (8-1). a : G2(n) —> G*(«) m a grow/? homomorphism and v.!F\M)-^-

IF\M) is a bundle homomorphism associated with a : G2(n) -> Gx(»î) ;

J^fA/) -^U S?\M)

Proof. It is easy to see.

Remark (8-1). We have a natural inclusion of GL(n; R) into Gr(n), defined by

g -^-jr(g) for a g e GL(n; R). In particular GL(n; R) and G\n) are isomorphic by

this inclusion. From now on we identify GL(n; R) with G\n) and consider GL(n; R)

as a subgroup of Gr(n) by this inclusion. Then the unit element e of GL(n; R)

corresponds to/(id) e Gr(ri)^r(Rn), here id means the identity transformation.

For a subgroup G of GL(n ; R) a G-subbundle A of 1F\M) is called a G-structure

on M. Let A and A' be G-structures on M and a manifold M' respectively. A

diffeomorphism h of M onto M' is called an isomorphism of A and A' if the first

prolongation A(1) satisfies hm(P)=P'. Especially an isomorphism of A itself is

called a G-automorphism of P.

We shall now define an An-values 1-form 8 on !F\M). Let A'be a vector tangent

to Jri(M) at a point /(/) e 3F\M).f induces an isomorphism/*1 of the tangent

space T(M)„M onto T(Rn)0, and 7rHt(A'p) is a vector in T(M)nip). We define 6 by

<A-p,ö>=/*1(7r*(A'p)).

The restriction of 8 onto a G-structure A is also denoted by 8 and called the

canonical form of P.

Lemma (8-2). Let A and P' be G-structures on M and M' respectively, and 8 and

8' be their canonical forms respectively. Ifh: M —>> M' is an isomorphism of P and

A', (ha))*8' = 8. Conversely if a bundle isomorphism H:P^-P' satisfies H * 8' = 8,

then H is the first prolongation ha) of the diffeomorphism H of the base manifolds M

and M' induced by H.

Proof. It is easy to see (cf. [8]).

Lemma (8-3). Let P be a G-structure on M and 8 be its canonical form. Then we

have
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(8-1). <A*,ey=0   forAeq,

(8-2). Ra*e = a-1foraeG.

Here 8 denotes the Lie algebra of G.

Proof.- It is easy to verify (cf. [8]).

Let yrs(Rn) be the vector space of all tensors of type (r, s) on R", i.e., &~T,(Rn)

= ((g)r Rn) <g> ((g)s (Rn)*). The group GL(n; R) naturally operates on ^\(Rn). For a

(7-structure A on M, a tensor field of type (r, s) on Af is a mapping £ of A into

Trs(Rn) satisfying lpa = a~1. (iP) for all a e G and p e A. This definition of a tensor

field on M is equivalent to the usual one.

Let H be a subgroup of G2(n). An //-subbundle g of J^^M) is called an H-

structure of 2nd order on M. Then v(Q)c:^rl(M) is an <x(/7)-structure on M, which

is called the associated a(H)-structure of Q. Let (2 and Q' be //-structure of 2nd

order on M and M' respectively. A diffeomorphism h: M -*• Ai' is called an

isomorphism of g and Q' if h(2)(Q)=Q'. Especially an isomorphism of Q itself

is called an H-automorphism of g.

We shall now define a 1-form 0 on ^2(M) with values in T(^l(Rn))e. Let jf

be a vector tangent to !F2(M) at j2(f). Since/is a diffeomorphism of a neighbor-

hood of the origin 0 e Rn onto a neighborhood of/(0) e M, it induces a diffeo-

morphism/" of a neighborhood of e e SP\Rn) onto a neighborhood of j\f) e

2F\M). /(1) then induces an isomorphism /^ of the tangent space T(^\Rn))e

at e onto the tangent space of 3^\M) at v(j2(f))=jx(f)- Then form 0 is defined by

<X0> = (/¿1))-1(-*W),

and is called the canonical form of ¡F2(M). For an //-structure of 2nd order Q,

the restriction of 0 onto Q is also denoted by 0 and called the canonical form

of Q.

Lemma (8-4). Let 0 and 0' be the canonical forms of &\M) and ^2(M')

respectively. Let h: M -*■ M' be a diffeomorphism. Then the second prolongation A<2)

of h satisfies

(#»)*©' = 0.

Conversely if H: Jr2(M) —>■ Jr2(M') w a bundle isomorphism such that //*©'= 0,

then H is the second prolongation h{2) of the diffeomorphism H of the base manifolds

M and M' induced by H.

Proof. See [8].

We define an action of G2(ri) on T(^\Rn))e. Let j2(g) e G2(ri) and;^/) e ^\Rn).

The mapping of a neighborhood of e onto a neighborhood of e defined by

induces a linear isomorphism of the tangent space T(&'1(Rn))e onto itself. This

linear isomorphism depends only on j2(g) and is denoted by Ad 02(^))-
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Lemma (8-5). Let 0 be the canonical form on Jr2(A/). Then

(8-3). (A*, @> = a*(A)forAea,2(n),

(8-4). (A*) 0 = Ad (a ~l) ■ 0 for a e G2(n).

Here g2(n) denotes the Lie algebra of G2(n) and a* is the linear mapping: g2(«) ->

gl(«, R) induced by a: G2(n) ->■ GL(n; R).

Proof. See [8].

Lemma (8-6). For an Ae g2(«) we have v*.(A*) = (a*A)*.

Proof. The proof is straightforward.

Lemma (8-7). Let 0 and 6 be the canonical forms of &2(M) and &\M) respec-

tively. Then we have

>4(0) = v*8.

Here v. &2(M) -> &\M) and V : S?2(Rn) -> ^(Rn).

Proof. Let A' be a vector tangent to &%M) at j2(f). Then

ix, v;(0)> = v'^x, ©> = 4MjVy-K**X)) =f*-1(**(v*x)) = <x, +9>.

Let A(n; R) be the affine group acting on Rn. Considering A(n; R) as a principal

bundle over Rn = A(n; R)/GL(n; R) with structure group GL(n; R), we have a

natural bundle isomorphism between A(n ; R) and &rl(Rn) :

A(n; R) <—► &\Rn)

A"        ld        A"

Under this isomorphism the identity e of A(n; R) (or of GL(n; R)) corresponds to

/¿(id). The tangent space of ^1(Rn) at e, corresponds to the Lie algebra

a(n ;R) = Rn + gl(n ; R)   of A(n ; R).

Let 0 be the canonical form of ^2(M). We denote by 0_x and 0O the Rn- and

gl(n; A)-component of 0.

Lemma (8-8). We have </©_! + [©_.., ©0] = 0.

Proof. See [12].

9. Flat Fo-structures of 2nd order. For a linear subgroup G of GL(n, R), the

subgroup Rn-G<^A(n, R) can be considered a G-structure on Rn. This structure is

called aflat G-structure. A G-structure A over M is called flat if it is locally equiva-

lent to the flat G-structure.

Let L/L0 be a semisimple homogeneous space, and I = g -1 © g0 © 9i be its

associated graded Lie algebra. We denote by 5 the point of {L0}. Then the mapping

Exp from q_x into L/L0 defined by Exp (x) = exp x-5 is a diffeomorphism into.
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We have a natural mapping i from L into ^2(L/L0) and a group homomorphism

i':Z,/L0^G2(n) by

leLh+f(l) =;2(/Exp),

«£i0H- i'(a) = j2(Exp-1 -a- Exp).

Lemma (9-1). i' ¿s injective. In particular i is injective.

Proof. Let N be the kernel of i, and n be the Lie algebra of N. Since N is con-

tained in the kernel of the linear isotropy representation, we get N^Gx, ncgj

(Lemma (6-5)). And it is clear n = {x e gx | [g, x]c8i}- Then by the same argument

in Proposition (3-1), we have n = 0. Thus Ais a discrete group. In view of Lemma

(6-1), we put N=expm. It is clear that G0 normalizes tV. Therefore, N being

discrete, we have [g0, trt]=0. Hence m = 0 by Lemma (3-4).

Thus L -> L/L0 can be naturally considered as an L0-structure of 2nd order (if we

fix g_!). We call this structure the flat L0-structure of 2nd order. An A0-structure

of 2nd order is called flat if it is locally equivalent of the flat A0-structure.

We recall that G2(ri) operates on g_j ©gl(g_i), identifying g_x with Rn (n =

dim g_i). With this in mind, we have the following.

Lemma (9-2). The group L0 (<= G2(ri)) leaves g _ j © g0 (c 8 -1 © 0^0 -1)) invariant.

And its operation onto g _ ! © g0 is identical to the operation of L0 :1/g _ i -> I/g _ x

induced by Ad (a) : I —> I.

Proof. This is trivial.

Let H be the Mauer-Cartan form of the group L. We write H as 2 = 3.! © S0

© Sj according to the decomposition I = 8-i © 8o © 8i-

Lemma (9-3). Let 0 = 0_j © 0O be the canonical form of the flat L0-structure of

2nd order L ~> L/L0. Then we have 0 _ x = H _ j and 0O = 30.

Proof. This follows from the definition of the Mauer-Cartan form.

Let L-*L/LQ be the flat A0-structure of 2nd order. Then v(A)dJrl(L/A0) is a

Go-structure, here G0 is the linear isotropy subgroup and v. ^2(L/L0) -> ^\LjL0).

Lemma (9-4). The G0-structure v(L)^L/L0 is flat.

Proof. This follows from Lemma (6-5).

10. Linear connections and 2nd order structures. An affine connection T on a

manifold M of dimension « is a gl(n; A)-values 1-form on ^\M) satisfying the

conditions

(10-1). <^*, Y} = A for A e gl(«; R),

(10-2). A?r = Ad (a-i)Y for a e GL(n; R).

For an element u e Rn, there exists uniquely a vector field Vu on ^\N) such that

<K„, T> = 0 and <KU, 0> = w, where 6 is the canonical form of &\M). We call this
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vector field Vu the horizontal vector field of u e Rn. The torsion form T(Y) and the

curvature form A(r) are defined by

(10-3). de=[6,Y] + T(Y),

(10-4). dY = i[Y, Y] + R(Y).

If A(r) = 0, r is called an affine connection with torsion. We define the curvature

tensor field r of type (1.3) by

xp(u, v) = < Vu A Vv, R(Y)}   for u, v e Rn.

We define the covariant derivative of a tensor field E of type (r, s) on M. At each

point p e ¿F\M), let V be the linear mapping of Rn into ^~l(Rn) defined by

V„ï = (Vu)p-%.

Then Vj is a tensory field of type (r, s+1).

A cross-section s: ¿F\M) -> ^2(M) is called admissible if we have

(10-5). s(p■ a) = s(p) aforpe SF\M) and a e GL(n; R).

Theorem (10-1) (S. Kobayashi [12]). For an admissible cross-section s: &>\M)

->^2(M). s*®0 is an affine connection on M without torsion. And this gives us

one-to-one correspondence between affine connections on M without torsion and

admissible cross-sections.

Let A be a G-structure on M. An affine connection r on M is called a G-connection

if the restriction of Y onto A has values in g (the Lie algebra of G).

Let L¡L0 he a semisimple flat homogeneous space. We fix once and for all its

associated graded Lie algebra I = 8-i © 8o © fli- Then L0 is a subgroup of G2(ri).

We denote by G0 the linear isotropy subgroup of L/L0; G0cAocG2(n).

Let A be a G0-structure on M and T be a G0-connection on A without torsion.

By Theorem (10-1), A is a G0-subbundle of ^2(M). By extending the structure

group G0 into L0, we have a L0-structure of 2nd order, which is called the Lo-

structure of 2nd order associated with a Go-connection Y, and denoted by Q({Y}).

Two Go-connections Y and Y' on A without torsion are called L0-equivalent if

Q(Y)=Q(Y'). This is clearly equivalence relations. Denote by A(P) the set of all

G0-connection on A without torsion, each equivalence class a in A(P) define

uniquely a L0-structure of 2nd order, which is denoted by Q(a).

Lemma (10-1). Let L/L0 be a semisimple flat homogeneous space with the associated

graded Lie algebra I = 8-i © 8o © 0i» and G0 be its linear isotropy group. Let

A -* M be a Go-structure and a an L0-equivalence class in A(P). If we denote by

0=0_i © 0O the canonical form of Q(jî), the associated L0-structure of-n-, then we

have

(1) 0_j is Q-i-valuedand 0O is Q0-valued,

(2) (A*, ®o) = A' (the ^-component of A), for A e b0 © 0i,

(3) /£(©_! © ©o) = Ad(a-1)(0_1+0o)modg1.
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Proof. (1) Let s: P -*■ Q(a) be the imbedding which gives one of G0-connection

in a. Then the restriction of 0_j and 0O have their values in g_! and g0 respectively.

Our assertion follows from Lemma (9-2). The rest of our assertion follows also

from Lemma (9-2) and the definitions.

Let/: M —> M be a G0-automorphism of a G0-structure A. Then for each element

T in A(P), /¿1}r is also a G0-connection on A. For each equivalence class a of

/4(A),/is called a-automorphism if/^1)a = o.

Proposition (10-1). Z/'771,1(I) is zero, then there is only one equivalence class in

A(P)ifA(P)¿0.

Proof. Let Y and Y' be two connections in A(P). Since Y — Y' is zero on the

fibres of A -> M, at each point p of A, there exists a function Fp from Rn into g0

such that <A", Y — Y'} = FP((X, 0» for each vector. We consider Fp as an element

of Cul(i). Since Y and P are torsion free, we have 8Fp = 0forp e P. Since /71>1(I) = 0

there exists F'p e C2,0(I) such that 8F'„ = FP. If s and 5 are admissible cross-sections

which give Y and Y' respectively, then it is easy to see that s'(p) = s(p) exp Fp.

Remark. For the geometric meaning of his proposition, see 7.

11. Normal Cartan connections. Let L/L0 be a connected homogeneous space

on which a Lie group L operates effectively and transitively. We denote by I and

I0 the Lie algebra of L and L0. A Cartan connection of type L/L0 on an L0-principal

bundle Q —s- M is, by definition, an I-valued 1-formcuon Q satisfying the conditions;

(11-0). dimM=dimF/L0,

(11-1). (A*,a>y = A for Ae\0,

(11-2). R*œ = Ad(a~1)œfor aeL0,

(11-3). <A", «j>#0 for every nonzero vector of Q.

Let H: Q -*■ Q be a bundle isomorphism. We call //an isomorphism of the Cartan

connection w if we have H*w = w. We define the curvature form Q = Q(cu) of tu by

Q = i/co + ^[(y, a)].

Lemma (11-1). We have

(1) AjD = Ad(a-1)U,

(2) z(y4*)fí = 0/or /4 e I0, Aere z(j4*)í2 means the inner product of Q and A*.

Proof. This is well known [15].

Example (11-1). Let cu0 be the Mauer-Cartan form of A. Then w0 is a Cartan

connection on the F0-principal bundle L r* L/L0.

Proposition (11-1). Let œ be a Cartan connection on an L0-principal bundle

ß —>- M. If the curvature form Q. of co is zero, then at each point me M, there exists

a local bundle isomorphism H between Q and L, defined on some neighborhood of

m such that H*oj0 = o¡).

Proof. Since Q is zero, the 1-form cu satisfies dw + \[u>, cu]=0. It follows that,

given a point u of Q, there exists a local diffeomorphism H of a neighborhood N'
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of the identity of L onto a neighborhood N of u which sends on into the Mauer-

Cartan form w0. Then it is easy to see that in an obvious manner, we extend H to a

diffeomorphism H: N' L0^- HL0. Let U' = tt'(N') and U=n(N), where sr':

L^L/Lo and -n-: Q^M. Then tt'-1(U') = N'-L0, and 7r-1(U) = N-L0. By con-

struction H: tt'~\U) —> tt~\U) is a bundle isomorphism.

From now on we assume furthermore that L¡L0 is a semisimple flat homogeneous

space. We denote by I = fl_i © 80 © 81 its associated graded Lie algebras and by

G0 its linear isotropy subgroup of L0. Then a Cartan connection cu and its curvature

form Q can be written respectively as

<o = <o_1©co0©a>1    and    Í2 = í2_1©£i0©fí1

according to the decomposition; I=8-i ©8o©0i- Then clearly we have the

following relations.

(11-4). n_1 = doj_1 + [oj0,oj_1].

(11-5). Üft-düo+iloutowj.
(11-6). Q1=doj1 + [w1, co0].

Lemma (11-2). IfQ_1=0,for an element aexp zeL0(ae G0, z e 8-1), we bave

(11-7). (Aa-expz)*Q0=Ad(fl-1)Q0,

(11-8). (ü0.expz)*£21=-[z, Qol + Adta-1)^.

Proof. By Lemma (11-1), we have

(Aa exp z)*(C20 © HO = Ad (exp (-z)^'1)^ © Qx)

= Ad (exp (-*))• Ad (a_1Xßo © Qi)

= exp ad (-z)(Ad (a-x)Q0 + Ad (a"1)^)

= Adía-^Qo + Adífl-^Üj-fz, Q0].

Lemma (11-3). Let A -> M be an G0-structure on M, and a be a L0-equivalence

class in A(P). Then there exists at least one Cartan connection o^cu.j © co0 © co1;

of type L/L0 on the associated L0-structure Q(d) of 2nd order such that o>_1 = &-1

and oj0= 0O, here ©=©_!© 0O is the canonical forms of Q(a).

Proof. This is a local problem. In fact let {t/A} be a locally finite open covering

of M with a partition of unity {/A}. If cüa is a Cartan connection on Q(a)Ux with the

given 0 _ j and 0O, then 2a (/à ° ^)wk is a Cartan connection on Q(a) satisfying

our condition, where it: Q(a) -> M is a projection. Hence our problem is reduced

to the case where Q(a) is a trivial bundle. Fix a cross-section s: A —> Ö such that

s(pa) = s(p)a for p eP and a e G0, and set (A', co!> = 0 for every vector tangent to

s(P). If Y is an arbitrary vector tangent to Q(a), then we can write uniquely

(11-9). U=Ra(X)+V
where A'is a vector tangent to s(P) and a e exp g^ And finally Kis a vector tangent

to a fibre of Q -> A so that K can be extended to a unique fundamental vector

field A* on ß with ^4 e glÉ Then we put
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(11-10)        <T, cü!> = gi-component of Ad(a~1)([X, Q_1 © ©0> + ,4.

Then cu= @_x © @0 © tuj is a Cartan connection. In fact for A e g0 and B e q1

(A* + B*, uS) = A + {A* + B*,œ1y = A + B   (Lemma (8-6)).

For exp z (z e gx) and T in (11-9),

< Y, (A exp z)*w> = <(A exp z), T, a.) = <(Aa exp z)* A + /!*, «,>

= <(Aaexpz)*A-+^, 0_! © 0O>

+ the g..-component of Ad (exp(—z)^1)^, ©_-. © &o) + A

= Ad (exp ( - z)a " x)<X, 0 _ x + 0O> + A    (from Lemma (9-2))

= Ad (exp (-z))<r, «>>.

Hence (Rexpz)*oj=Ad (exp (-z))w. For a g e G0,

<T, A*c> = <AgT, «,> = <A9.Aa.A-+A9..4, «>

= (A^.A^A^AXAd (g-xM)*, «,>

= Ad^-^^-K^-A-.^ + Ad^-1)^    (g-^geexpgO

= Ad (g-^agyXRe-X, 0_! © 0o> + ^(g-1)/i

(since Aj.A'is tangent to 5(A))

= AdQr1^)-1 Adig^XA-, ©_,. © 0o> + Ad(g"1M

= Ad (g"1*"1) <A-, ©.j © 0o> + Ad (g^)A

= AdGr^íAdía^XA, 0_x © 0O> + ̂ }

= Ad (g^KlW.

Thus we have shown that the conditions (11-1) and (11-2) are satisfied. Now since

<T, o.> = Ad(t7-1)<A', 0_! © 0O> + /1, <y, co> = 0 implies T=0, proving the

condition (11-3).

A Cartan connection which satisfies the assumption of Lemma (11-3) is called an

admissible Cartan connection on Q(a).

' Let now w = &_1 © 0O © w1 be an admissible Cartan connection on Q(a), and

Í2 = £í_! © O0 © Oj be its curvature form.

Lemma (11-4).  We have Q_!=0. And there exists a form Ù. on P such that

v*Q. = Q.0.

Proof. By (11-4),  Cl^^d®-i_ + [®o, 9_x]. Then  by Lemma (8-8) we have

ü_!=0. The rest of our assertion follows from (11-1).

At each point q e Q, we define a subspace Hq of T(Q)Q by

Hq = {Xe T(Q\ | <A-, ©0> = 0, <A", u>{> = 0}.

Lemma (11-5).  We have T(Q)q = Hl¡ © (g0 © Qi)* (direct sum), and ©_! is a

linear isomorphism from Hq onto g_!.
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Proof. From the condition (11-3), A^Q n (g0 © g1)* = {0}. Take any element

XeT(Q)q. Then A*-«Ar, ©o + toj»* belongs to Hq. The surjectivity of 0_j.

follows from Lemma (8-7), and the injectivity follows from the condition (11-3).

Now we define mappings c = c(co) and v = b(co) from Q into C1,2(l) and C2,2(I)

respectively by

cq(u, v) = <A" A  Y, Q0>    and   bQ(u, v) = <X A  Y, Q..>,

where A", Te 77, are defined by <X, 0_1>=M and <T, 0_i> = f.

Lemma (11-6). We have

(1) <Vaexpz = p(a)~icqfor a e G0, z e gl5

(2) 3Cg = 0/Oreye 2(a),

(3) z/O.o = 0, //ze« 8bq = 0for q e Q(a).

Proof. First we remark that cq(u, u) = <A" A I", Q0> if <A", 0_!> = z¿ and

<r, ©_1> = f. In fact let XeHq and Ye Hq be such that (.X, 0_i> = « and

<r, 0-1> = n. Then A"-A" = ^* and 7- T* = A* for /Í, A e g0 © gx. Then our

remark follows from Lemma (11-1). Combining this with the fact

<(Aexp*)**, ©-i) = Adía^XA; 0_x>

our first assertion can be proved. From Lemma (11-4), differentiating (11-4),

wehaveO=[i/0o, 0_i]-[0o, ¿©-i]- From (11-5), we have

[0_1; D0] = [©-i, </0o]+*[0-i, [©o, 0o]] + [0-i[0-i, ©i]]

=   [0O,¿0-l]+i[0-l[0O,   ©o^+10-lt©-!,  ©i]]-

Therefore the restriction of [0_l5 O-0] onto Hq is zero, this is nothing but 8cq = 0.

Analogously we can prove (3).

Let o>'= ©_! © &o + oj[ be another admissible Cartan connection on Q(a).

As before we define H'a by

H'q = {XeT(Q\ | (X, 0O> = 0, {X, col> = 0}.

Take u e g_!. If Xu (resp. X'u) is the element in Hq (resp. H'q) such that (Xu, 0_i>

= « (resp. <%, ©_!>=«), we have (Xu-X'u., 0_j.>=O and <A-U-A";, ©0> = 0.

Therefore there exists an element/„(zz) in gx such that Xu— X^ = (fq(u))*. Clearly

the mapping/: g_j -> gj can be considered as an element of C2,1(l). Thus with

two admissible Cartan connections co and to', we associate a function /(co, to')

from Q into C2-1©.

Lemma (11-7). Lei co= @_x © 0O © w1 and co' = ©_! © 0O © coi be two

admissible Cartan connections on Q(a). Then we have c(co)q — (coj')q = 8f(w, w')q for

each q e Q(a).

Proof. Let Q0 and Q0 be the g0-component of the curvature forms of co and co'

respectively. From (11-5) we have ü0 —í20=[©-i, ^i —^i]- Take u,veQ_1. And
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let Xu, YveHq and  X'u, Y'ueH'q be such that (Xn, ®.1} = <,K, ©_i>=8 and

<TV, 0_1> = <7^, ©_!> = ». Then

c(co)q(u, v)-c(co')q = <Z„ A  T„, O0>-<^; A  Y'u, Q0>

= <x; + (/(co, u>')q(u))* A  r, + (/K ««>'),(»))*, "<>>

-<*; a y;,a0>

= <% A  FÍ, £i0>-<*£ A  Y'v, n;>   (from Lemma (11-1))

= <X; A   Yv, ß0-O0> = <K A   Y'v, [©-líüí-wÍ])-

From this our assertion follows if we remark that

< A^, a»! - a»i> = /(«j, «j')«(")   and    < Tú, "<i - «>i> = /(«>» <«')<i(i>)-

The function c(oS) from g(a) into C1,2(I) is called Weyl cocycle for w.

Theorem (11-1) (N. Tanaka). Let L/L0 be a semisimple flat homogeneous space

such that H2,1(i) = 0. Given a Go-structure P on a manifold M, here G0 denotes the

linear isotropy group of L/L0. Then for each L0-equivalence class a in the set of all

Go-connections on A, there exists uniquely an admissible Cartan connection on the

associated L0-structure Q(a) of a such that its Weyl cocycle c(io)q is harmonic at

each point q of Q(a) (cf., the definition after Lemma (4-1)).

Proof. (Uniqueness). Let w=&_1 © 0O © toi and a>'= ©_!+ ©0 © coi be two

admissible Cartan connections such that their Weyl cocycle c(o>) and c(o>') are

harmonic, or equivalently 8c(oS) = 8*c(oj') = 0. From Lemma (11-7), we have

c(oj)-c(oJ') = 8f(oj,w'). Thus we have 8* 8f(u>, w) = Uf(<», *o') = 0. Since Af2>1(I)

= 0, we have/(cu, a/) = 0. This is nothing but cu1 = coi.

(Existence). Let ¿5= @_x © 0O © ¿Si be an arbitrary admissible Cartan con-

nection on Q(a) (cf. Lemma (11-3)). Let A be a C2,1(I)-valued function on Q(a)

determined by [JJ=8* 8J=8*c(to). J is well determined since //21(l) = 0 implies

that □ is an isomorphism of C2,1(I). For aexpzeL0 (aeG0, z e Qj), we have

JqaexPz = p(a)'xJQ since p(a)0 = Op(a) and c(w)q.a.exp2 = P(a)c(w)q (cf. Lemma

(11-6)). We define a I-valued 1-form to on Q(a) by

<*,»>-<¿,«>+/(<ir, 0-i»,

for a vector tangent to Q. Then u is the required admissible Cartan connection.

In fact

(i) (A*,oS) = </!*, oSy+J^A*, 0_!» = <^*, oj} = A.

(ii) If (X, oj> = 0, then

0 = {X, «>>+/«X, ©_!» = CX, 8_1>+<JT, 0o> + {<*>i>+A<*> ©_!»}.

Thus {X, ©_1> = <A', 0O>=O. Therefore X is of the form A* for some A e g^

Since (A*, oj} = A, A must be 0.
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(iii) For a-exp z e L0 (a e G0, z e gx) and a vector Xq in T(Q)q, we have

<A"5, (Aa.exp2)*co> = <(Aa.exp2)*A', co>

= \(Aa.exp2)*Ag, co)>+7g.a.exp2('((Aa.exp2)*, ©-j»

= Ad(aexpz)-\Xq, oj}+Jq.a.expz(Ad(a-\X, &_,}))

= Ad(aexpz)-\Xq,coy + Ad(a-i)(P(a)Jq,aexP2)«.X, &.,})

= Ad(aexpz)-\Xq, wy + Ad(a-1)-Jq«X, ©_,.»

= Ad(aexpz)-1<A'9,co>+Ad(aexpz)-1-7g«A", 0_x»

= Ad (a exp z)~x(Xq, co>.

Thus we have shown that co is a Cartan connection. Clearly this is admissible.

Now the Weyl cocycle c(co) of co is given by c(w) = c(w) — dj. Therefore 8*c(u>)

= 8*c(oj)-8* 8J. Since 8* 8J=8*c(o>), we have d*c(w) = 0, i.e. c(co) = 0.

The admissible Cartan connection, which is assured to exist in Theorem (11-1)

is called the normal Cartan connection of the F0-equivalence class.

Now we preserve our notations in Theorem (11-1). Let H: M—> M be a Go-

automorphism of A, preserving a. Then 2nd prolongation h(2) of h is an isomorphism

of Q(a). Then by the uniqueness, hw is an isomorphism of the normal Cartan

connection. Thus we have a natural mapping from the group of G0-automorphism

preserving a into the group of isomorphisms of the normal Cartan connections.

Lemma (11-8). The mapping defined above is bijective.

Proof. The injectivity is trivial. The surjectivity follows from Lemma (8-4).

Corollary (11-1). The group of all Go-automorphisms of A preserving a is a

finite dimensional Lie group.

Proof. This follows from Lemma (11-8) and the fact that the automorphism

group of a Cartan connection is a finite dimensional Lie group [11].

Now let L^-L/Lo be the flat L0-structure. And as in §9, 3 = 3_1 ©30 © 3X

be the Mauer-Cartan form of L. Then 5 is clearly the normal Cartan connection

of the natural equivalence class on the flat G0-structure.

Lemma (11-9). The automorphism group of the normal Cartan connection of

L -» L/Lo is L.

Proof. Clearly L is contained in the automorphism group since L preserves the

Mauer-Cartan form. Conversely let h be a bundle isomorphism preserving the

normal Cartan connection. Then h(2) preserves the Mauer-Cartan connection.

Then Lha\e}-1 ■ h™ also preserves the Mauer-Cartan form and the identity of L.

Therefore Lha\e)-i-h is the identity on the connected component of the identity.

Then /z(2) is Lh^\e) from Lemma (8-4).

Lemma (11-10). A local automorphism of the normal Cartan connection of

L->L/L0 can be uniquely extended to a global automorphism of L-^-L/L0.
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Proof. This can be proved as Lemma (11-9).

12. The Weyl tensors. Let L/A0 be a semisimple flat homogeneous space such

that A72'1(I) = 0. Given a G0-structure A on a manifold M, here G0 is the linear

isotropy subgroup of L/L0. Let a be a A0-equivalence class in A(P), the set of

all Go-connection on A without torsion. Let o> be the normal Cartan connection

on Q(a); the associated L0-structure of a. Then by Lemma(11-1) and Lemma (11-6),

the Weyl cocycle c(co) can be considered as a tensor field of type (1.3). We call the

tensor field the Weyl tensor field of the family a, and denoted by W(a). If L/L0

satisfies furthermore A/1,1© = 0, we can uniquely define an A0-structure of 2nd order

since there is only one equivalence class in A(P) (see Proposition (10-1)). In this

case we call W(a) the Weyl tensor of a G0-structure A.

Theorem (12-1). Let L/L0 be a semisimple flat homogeneous space such that

H2,1(l) = 0 and H2,2(l) = 0. Given an L0-equivalence class a on a Go-structure A,

G0 being the linear isotropy subgroup of L/L0. Then the following are equivalent

to each other:

(1) WT» = 0,
(2) Q(a) is flat.

IfL/L0 satisfies H1-1(l) = 0, then the following are equivalent to each other:

(T) The Weyl tensor of P vanishes.

(2') A is flat.

Proof. Since the Weyl tensor of the flat L0-structure L -*■ L/L0 vanishes, (2)

clearly implies (1). By Lemma (11-6), W(a) = 0 implies the curvature form of the

normal Cartan connection vanishes since //2'2(f) = 0. Then by Proposition (9-1),

(1) implies (2). The second assertion follows from Lemma (7-4).

Proposition (12-1). Let L/L0 be a semisimple flat homogeneous space such that

A/2,1(I) = 0. Let Y be a Go-connection in a L0-equivalence class a in A(P). We denote

by s the admissible cross-section corresponding to Y. Let co= ©_! © 0O © w1 be

the normal Cartan connection of a.

(1) There exists a tensor field S: A-> C2-1© such that <,X,s*a>1) = S(<,X, 0»

for a vector tangent to A, here 9 is the canonical form of P.

(2) W(a) = x(Y) © 8S, x(Y) is the curvature tensor field of Y.

(3) S=-U-\8*(Y)).

Proof. Since s*w, is zero on the fibre of A -> M, s*oj can be expressed by 0.

(2) From (11-5), we have

s*tl0 = s*(d@o+±[Qo, 0o] + [0-i, «iD

= «fe* ©o+Us* ®o,s* S0] + [s* 0.„iS].

Since s*w0 = Y, s*&^1 = 6, we get i*ß0=r(r)+[ö, ¿*co1]. From this (2) is proved.

(3) Applying 8* to (2), we have 8* W(a) = 8*x(Y) + 8* 8S. Since 8*W(a) = 0, we

have the desired formula.
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13. Applications to geometric transformations. Let L/L0 be a semisimple flat

homogeneous space such that 7/2,1(I) = 0. Given a G0-structure A on a manifold

M, G0 being the linear isotropy subgroup of L/L0. Let a be an L0-equivalence class

in A(P). Let Q = ß0 + -^i be the curvature form of the normal Cartan connection

of a. Let s: P ^ Q(a) be an admissible cross-section, and Y he the G0-connection

corresponding to s. Then 8*(x(Y)) is called the Ricci tensor field of Y, here r(r) is

the curvature tensor field of Y. Here we remark that g! and g_x are naturally dual

from Lemma (3-3), therefore we can consider 8*x(Y) as a tensor field.

Theorem (13-1). Let s: A—> Q(a) be a Go-connection in a. If the Ricci tensor

field is parallel (i.e. V(3*r(r)) = 0), then ^D^O.

Proof. From (11-6), we have

s*Ùx = ^(c/coi + K, 0O]) = ds*wx + [s*u>u Y]   (Y = s*Q0).

Since s*Cl! is zero on the fibres of A —> M, for tangent vectors X and Y, we have

<x a Y,s*n,y = <f9(X) a Ve(.n,s*uù = <ve<X) a vem,ds*wxy

= vemiveiY),s*oj1y-ver/){veiX),s*oj1y-qyeiX), vea)],s*oj1y.

Here VmX) and Vem denote the horizontal vector fields corresponding 8(X) and

8(Y) respectively. Since Y is torsion free, [VB{X), VeiY)] is tangent to the fibres. Thus

we get

<VU a V^a*Oi> = (WuS)(v)-(VvS)(u)

for u, v e g_1; here 5 is defined in Proposition (12-1). By Proposition (12-1), we

know S= -D_1(3*r(r)). In particular V3*r(r) = 0 implies V5'=0. Thus j*i21=0.

Theorem (13-2). Let s:P^- Q(a) and t: A-> Q(a) be two G0-connections in a.

Then there exists a tensor field A : A-> gx such that A(p) = s(p) ■ exp Ap. If the Ricci

tensor fields of s and t are parallel, then [Ap, W(a)p] = 0 for peP.

Proof. The first assertion is easy to see. For tangent vectors Xp and Yp at p,

we have

<a-p a Yp,t*n,y = <a-p a Yp,(RexpA.s)*ü1y

=  <(ReXPA-S)*(Xp  A    Yp), Dx>.

Since (Aexp4.s)*A'p = (AeXp/.)*(.s*A'P) + {a vertical vector}, we have

<A-P A  Yp, t*^ = <.(RexpAp)*s*(Xp A  Yp), n,y   from Lemma (11-1).

Then by Lemma (11-2), we have

(A, A   Yp, i*0.!> = <5*(A-P A   Yp), -[Ap, Ü0] + ^i>

= <A-P A  Y„ -Mp,j*Ü0]+í*"i>.

Since j*Ûj and z**il1 = 0, we have [Ap, s*Q.0]=0. Since s*Q0 defines the Weyl

tensor W(a), we have the desired result.
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For a Go-connection Y in a, we denote by Aut (A, Y) the subgroup of the

automorphism group Aut (a) of the A0-equivalence class a preserving Y. We

suspect:

Conjecture. We assume A/A0 is simple. If Y is complete, Ricci-parallel and

Aut (A, Y) is strictly different from Aut (a), then (up to covering) M is diffeo-

morphic to L/L0 and A0-structure Q(a) -> M coincides with the flat L0-structure

L —> L/L0. This conjecture is true when A/A0 is a projective space (resp. a Moebius

space) and L is the group of projective transformations (resp. conformai trans-

formations), provided Y is the Lemi-Civita connection of some riemannian metric

[20], [21].

Theorem (13-3). Let L¡L0 be a simple flat homogeneous space such that H2,1(l)=0.

Given a Go-structure A on M, G0 being the linear isotropy group ofL/L0, ¡et Y be a

complete Go-connection on A whose Ricci-tensor is parallel. If we have

(1) Aut ({r}) is transitive on M,

(2) the connected component of the linear isotropy group is irreducible,

(3) Aut(A,{r}) = Aut({T}),

then M is diffeomorphic to L/L0 (up to covering) and Aut (A, {r}) is identical to L.

Proof. We may assume M is simply connected. Let/be an element in Aut ({r})

such that/*r/r. Let p e A be a point such that/*rp#rp. Taking as s and t in

Theorem (13-2) the cross-sections corresponding to/*T and Y respectively, we

get the tensor field A such that [Ap, W({Y})p] = 0. We denote by Ad (g) the linear

isotropy representation of the isotropy subgroup Aut ({r})p of Aut ({I"1}) at p.

For each g in Aut ({Y})p, replacing/by g we also have

[<Ad(g)-1Ap,W({Y})p]=0.

Since the linear isotropy representation is irreducible, we have W({Y})p = 0. Then

the homogeneity implies W({Y}) = 0. By Proposition (12-1), we have

r(r) = 8(D-1(ô*r(r)))-

Since the Ricci-tensor is parallel, so is the curvature tensor rfT). Thus (M, Y) is a

global affine symmetric space, and so is (M,f*Y). Let x be a point in M and tx be

the symmetry of (M, Y) at x. If G0 contains the element — /, then rx preserves A

since T is a G0-connection on A and tx preserves the fibre of A at x. When G0

does not contain —/, we consider the bundle extension to A uA-( —A) (disjoint).

Then tx(P)=P(-I) and tx(P( — I))=P. Now there exists a point z in M such

that T2-T;j#id here t'z is the symmetry of (M,f*Y) at z. In fact, otherwise, the

symmetries of (M,f*Y) coincide at every point M. From this we see that Y=f*Y.

Then from the above remark, we see tzt'z preserves A. Then it is easy to see that

tztz is an element of Aut ({r}). Let h be the Lie algebra of Aut ({T}). Then h can be

considered as a germ of vector field at z. Since ß({r}) is locally equivalent to A/L0,

we can consider h is a germ of vector field at the origin of L/L0. Then using Lemma
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(11-10), we can consider h is a subalgebra of I. Also using (11-10), rt-r'z can be

considered as an element of A. Furthermore tz-t'x belongs to exp ^ since its linear

isotropy representation is the identity. We write tzt'z as r„»r2 = exp Z (Z#0). Then

clearly h © {Z} forms a subalgebra of I such that its linear isotropy representation

is irreducible. Then using Proposition (3-6), we conclude, h = I. Therefore M=L/L0.

Bibliography

1. A. Borel, On the curvature tensor of the Hermitian symmetric manifolds, Ann. of Math.

(2) 71 (1960), 508-521. MR 22 #1923.
2. A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces. I, Amer.

J. Math. 80 (1958), 458-538. MR 21 #1586.

3. E. Cartan, "Les espaces a connexion conforme," en Oevres complètes. Part III, Vol. I:

Divers, géométrie différentielle, Gauthier-Villars, Paris, 1955, pp. 749-797. MR 17, 697.

4. -, "Sur les variétés a connexion projective," en Oevres complètes. Part III, Vol. I:

Divers, géométrie différentielle, Gauthier-Villars, Paris, 1955, pp. 825-861. MR 17, 697.

5. S. S. Chern, Pseudo-groupes continus infinis, géométrie différentielle, Colloq. Internat.

Centre National Recherche Scientifique (Strasbourg, 1953) Centre National de la Recherche

Scientifique, Paris, 1953, pp. 119-136. MR 16, 112.

6. C. Ehresmann, Les connexions infinitésimales dans un espace fibre différentiable, Colloque

de Topologie (espaces fibres) (Bruxelles, 1950) Georges Thone, Liège et Masson, Paris, 1951,

pp. 29-55. MR 13, 159.
7. V. W. Guillemin, The integrability problem for G-structures, Trans. Amer. Math. Soc. 116

(1965), 544-560. MR 34 #3475.
8. V. W. Guillemin and S. Sternberg, Deformation theory of pseudogroup structures, Mem.

Amer. Math. Soc. No. 64 (1966). MR 35 #2302.

9. S. Helgason, Differential geometry and symmetric spaces. Pure and Appl. Math., vol. 12,

Academic Press, New York, 1962. MR 26 #2986.

10. S. Kobayashi, On connections of Cartan, Canad. J. Math. 8 (1956), 145-156. MR 17, 1126.

11. -, Theory of connections, Ann. Math. Pura Appl. (4) 43 (1957), 119-194. MR 20

#2760.
12. -, Canonical forms on frame bundles of higher order contact, Proc. Sympos. Pure

Math., vol. 3, Amer. Math. Soc, Providence, R. I., 1961, pp. 186-193. MR 23 #A4104.

13. S. Kobayashi and T. Nagano, On projective connections, J. Math. Mech. 13 (1964),

215-235. MR 28 #2501.

14. -, On filtered Lie algebras and geometric structures. I, II, J.  Math. Mech. 13

(1964), 875-907; ibid., 14 (1965), 513-521. MR 29 #5961 ; MR 32 #2512.

15. S. Kobayashi and K. Nomizu, Foundations of differential geometry. Vol. I, Interscience,

New York, 1963. MR 27 #2945.

16. B. Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of

Math. (2) 74 (1961), 329-387. MR 26 #265.

17. Y. Matsushima and S. Murakami, On vector bundle valued harmonic forms and auto-

morphic forms on symmetric riemannian manifolds, Ann. of Math. (2) 78 (1963), 365—416. MR

27 #2997.

18. -, On certain cohomology groups attached to Hermitian symmetric spaces, Osaka

J. Math. 2 (1965), 1-35. MR 32 #1728.

19. S. Murakami, Cohomology groups of vector-valued forms on symmetric spaces, Lecture

Note, Univ. of Chicago, Chicago, 111., 1966.

20. T. Nagano, The projective transformation on a space with parallel Ricci tensor, Ködai

Math. Sem. Rep. 11 (1959), 131-138. MR 22 #216.



1970] SEMISIMPLE FLAT HOMOGENEOUS SPACES 193

21. T. Nagano, The conformai transformation on a space with parallel Ricci tensor, J. Math.

Soc. Japan 11 (1959), 10-14. MR 23 #A1330.

22. -, Transformation groups on compact symmetric spaces, Trans. Amer. Math. Soc.

118 (1965), 428-353. MR 32 #419.

23. T. Ochiai, Classification of the finite nonlinear primitive Lie algebras, Trans. Amer. Math.

Soc. 124 (1966), 313-322. MR 34 #4320.

24. -, On the automorphism group of a G-structure, J. Math. Soc. Japan 18 (1966),

189-193. MR 33 #3224.

25. "Sophus Lie" de l'Ecole Normale Supérieure 1954/55, Séminaire théorie des algebres

de Lie. Topologie des groupes de Lie, Secrétariat mathématique, Paris, 1955. MR 17, 384.

26. I. M. Singer and S. Sternberg, The infinite group of Lie and Cartan. I. The transitive

groups, J. Analyse Math. 15 (1965), 1-114. MR 36 #911.

27. N.  Tanaka,  Projective connections and projective transformations,  Nagoya  Math.  J.

12 (1957), 1-24. MR 21 #3899.

28.-, Conformai connections and conformai transformations, Trans. Amer. Math. Soc.

92 (1959), 168-190. MR 23 #A1331.

29. -, On the equivalence problems associated with a certain class of homogeneous

spaces, J. Math. Soc. Japan 17 (1965), 103-139. MR 32 #6358.

30. H.  Weyl, Zur Infinitesimalgeometrie  Einordnung der projektiven  und der konformen

Auffassung, Göttingen. Nachr. 1921, 99-112.

University of Notre Dame,

Notre Dame, Indiana 46556


