Functional analytic properties of topological semigroups and $n$-extreme amenability
HTML articles powered by AMS MathViewer
- by Anthony To-ming Lau
- Trans. Amer. Math. Soc. 152 (1970), 431-439
- DOI: https://doi.org/10.1090/S0002-9947-1970-0269772-9
- PDF | Request permission
Abstract:
Let $S$ be a topological semigroup, $\operatorname {LUC} (S)$ be the space of left uniformly continuous functions on $S$, and $\Delta (S)$ be the set of multiplicative means on $\operatorname {LUC} (S)$. If $( \ast )\operatorname {LUC} (S)$ has a left invariant mean in the convex hull of $\Delta (S)$, we associate with $S$ a unique finite group $G$ such that for any maximal proper closed left translation invariant ideal $I$ in $\operatorname {LUC} (S)$, there exists a linear isometry mapping $\operatorname {LUC} (G)/I$ one-one onto the set of bounded real functions on $G$. We also generalise some recent results of T. Mitchell and E. Granirer. In particular, we show that $S$ satisfies $( \ast )$ iff whenever $S$ is a jointly continuous action on a compact hausdorff space $X$, there exists a nonempty finite subset $F$ of $X$ such that $sF = F$ for all $s \in S$. Furthermore, a discrete semigroup $S$ satisfies $( \ast )$ iff whenever $\{ {T_s};s \in S\}$ is an antirepresentation of $S$ as linear maps from a norm linear space $X$ into $X$ with $||{T_s}|| \leqq 1$ for all $s \in S$, there exists a finite subset $\sigma \subseteq S$ such that the distance (induced by the norm) of $x$ from ${K_X} = \text {linear span}$ of $\{ x - {T_s}x;x \in X,s \in S\}$ in $X$ coincides with distance of $O(\sigma ,x) = \{ (1/|\sigma |)\sum \nolimits _{a \in \sigma } {{T_{at}}(x);t \in S\} }$ from 0 for all $x \in X$.References
- F. F. Bonsall, J. Lindenstrauss, and R. R. Phelps, Extreme positive operators on algebras of functions, Math. Scand. 18 (1966), 161–182. MR 209863, DOI 10.7146/math.scand.a-10789
- Mahlon M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509–544. MR 92128
- Mahlon M. Day, Semigroups and amenability, Semigroups (Proc. Sympos., Wayne State Univ., Detroit, Mich., 1968) Academic Press, New York, 1969, pp. 5–53. MR 0265502
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- Edmond Granirer, A theorem on amenable semigroups, Trans. Amer. Math. Soc. 111 (1964), 367–379. MR 166597, DOI 10.1090/S0002-9947-1964-0166597-7
- E. Granirer, Extremely amenable semigroups, Math. Scand. 17 (1965), 177–197. MR 197595, DOI 10.7146/math.scand.a-10772
- E. Granirer, Extremely amenable semigroups. II, Math. Scand. 20 (1967), 93–113. MR 212551, DOI 10.7146/math.scand.a-10825
- Edmond E. Granirer, Functional analytic properties of extremely amenable semigroups, Trans. Amer. Math. Soc. 137 (1969), 53–75. MR 239408, DOI 10.1090/S0002-9947-1969-0239408-3
- E. Granirer and Anthony T. Lau, Invariant means on locally compact groups, Illinois J. Math. 15 (1971), 249–257. MR 277667
- Frederick P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Mathematical Studies, No. 16, Van Nostrand Reinhold Co., New York-Toronto-London, 1969. MR 0251549
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. MR 551496
- Anthony To-ming Lau, Topological semigroups with invariant means in the convex hull of multiplicative means, Trans. Amer. Math. Soc. 148 (1970), 69–84. MR 257260, DOI 10.1090/S0002-9947-1970-0257260-5
- E. S. Ljapin, Semigroups, Translations of Mathematical Monographs, Vol. 3, American Mathematical Society, Providence, R.I., 1963. MR 0167545
- Theodore Mitchell, Fixed points and multiplicative left invariant means, Trans. Amer. Math. Soc. 122 (1966), 195–202. MR 190249, DOI 10.1090/S0002-9947-1966-0190249-2
- Theodore Mitchell, Function algebras, means, and fixed points, Trans. Amer. Math. Soc. 130 (1968), 117–126. MR 217577, DOI 10.1090/S0002-9947-1968-0217577-8
- Theodore Mitchell, Topological semigroups and fixed points, Illinois J. Math. 14 (1970), 630–641. MR 270356
- I. Namioka, On certain actions of semi-groups on $L$-spaces, Studia Math. 29 (1967), 63–77. MR 223863, DOI 10.4064/sm-29-1-63-77 J. Sorenson, Existence of measures that are invariant under a semi-group of transformations, Thesis, Purdue University, Lafayette, Ind., 1966.
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 152 (1970), 431-439
- MSC: Primary 22.05; Secondary 46.00
- DOI: https://doi.org/10.1090/S0002-9947-1970-0269772-9
- MathSciNet review: 0269772