## Group algebra modules. IV

HTML articles powered by AMS MathViewer

- by S. L. Gulick, T.-S. Liu and A. C. M. van Rooij
- Trans. Amer. Math. Soc.
**152**(1970), 581-596 - DOI: https://doi.org/10.1090/S0002-9947-1970-0270171-4
- PDF | Request permission

Part III: Trans. Amer. Math. Soc. (2) (1970), 561-579

## Abstract:

Let $\Gamma$ be a locally compact group, $\Omega$ a measurable subset of $\Gamma$, and let ${L_\Omega }$ denote the subspace of ${L^1}(\Gamma )$ consisting of all functions vanishing off $\Omega$. Assume that ${L_\Omega }$ is a subalgebra of ${L^1}(\Gamma )$. We discuss the collection ${\Re _\Omega }(K)$ of all module homomorphisms from ${L_\Omega }$ into an arbitrary Banach space $K$ which is simultaneously a left ${L^1}(\Gamma )$ module. We prove that ${\Re _\Omega }(K) = {\Re _\Omega }({K_0}) \oplus {\Re _\Omega }({K_{\text {abs} }})$, where ${K_0}$ is the collection of all $k \in K$ such that $fk = 0$, for all $f \in {L^1}(\Gamma )$, and where ${K_{\text {abs} }}$ consists of all elements of $K$ which can be factored with respect to the module composition. We prove that ${\Re _\Omega }({K_0})$ is the collection of linear continuous maps from ${L_\Omega }$ to ${K_0}$ which are zero on a certain measurable subset of $X$. We reduce the determination of ${\Re _\Omega }({K_{\text {abs} }})$ to the determination of ${\Re _\Gamma }({K_{\text {abs} }})$. Denoting the topological conjugate space of $K$ by ${K^ \ast }$, we prove that ${({K_{\text {abs} }})^ \ast }$ is isometrically isomorphic to ${\Re _\Omega }({K^ \ast })$. Finally, we discuss module homomorphisms $R$ from ${L_\Omega }$ into ${L^1}(X)$ such that for each $f \in {L_\Omega },Rf$ vanishes off $Y$.## References

- F. T. Birtel,
*On a commutative extension of a Banach algebra*, Proc. Amer. Math. Soc.**13**(1962), 815–822. MR**176349**, DOI 10.1090/S0002-9939-1962-0176349-3 - T. A. Davis,
*The Wiener-Pitt phenomenon on semi-groups*, Proc. Cambridge Philos. Soc.**59**(1963), 11–24. MR**144153**, DOI 10.1017/s0305004100001936 - S. L. Gulick, T. S. Liu, and A. C. M. van Rooij,
*Group algebra modules. I*, Canadian J. Math.**19**(1967), 133–150. MR**222662**, DOI 10.4153/CJM-1967-008-4 - S. L. Gulick, T. S. Liu, and A. C. M. van Rooij,
*Group algebra modules. II*, Canadian J. Math.**19**(1967), 151–173. MR**222663**, DOI 10.4153/CJM-1967-009-0
—, - Edwin Hewitt and Kenneth A. Ross,
*Abstract harmonic analysis. Vol. I*, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. MR**551496** - Teng-sun Liu and Ju-kwei Wang,
*Sums and intersections of Lesbesgue spaces*, Math. Scand.**23**(1968), 241–251 (1969). MR**262898**, DOI 10.7146/math.scand.a-10916
L. Máté, - Marc A. Rieffel,
*Induced Banach representations of Banach algebras and locally compact groups*, J. Functional Analysis**1**(1967), 443–491. MR**0223496**, DOI 10.1016/0022-1236(67)90012-2 - J. G. Wendel,
*Left centralizers and isomorphisms of group algebras*, Pacific J. Math.**2**(1952), 251–261. MR**49911**

*Group algebra modules*. III, Trans. Amer. Math. Soc.

**152**(1970), 561-579.

*Multipliers and topological tensor products*(to appear).

## Bibliographic Information

- © Copyright 1970 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**152**(1970), 581-596 - MSC: Primary 46.80; Secondary 22.00
- DOI: https://doi.org/10.1090/S0002-9947-1970-0270171-4
- MathSciNet review: 0270171