Approximations and representations for Fourier transforms
HTML articles powered by AMS MathViewer
- by Raouf Doss
- Trans. Amer. Math. Soc. 153 (1971), 211-221
- DOI: https://doi.org/10.1090/S0002-9947-1971-0268597-9
- PDF | Request permission
Abstract:
$G$ is a locally compact abelian group with dual $\Gamma$. If $p(\gamma ) = \sum \nolimits _1^N {{a_n}({x_n},\gamma )}$ is a trigonometric polynomial, its capacity, by definition is $\Sigma |{a_n}|$. The main theorem is: Let $\varphi$ be a measurable function defined on the measurable subset $\Lambda$ of $\Gamma$. If $\varphi$ can be approximated on finite sets in $\Lambda$ by trigonometric polynomials of capacity at most $C$ (constant), then $\varphi = \hat \mu$, locally almost everywhere on $\Lambda$, where $\mu$ is a regular bounded measure on $G$ and $||\mu || \leqq C$.References
- N. I. Ahiezer, Lekcii po Teorii Approksimacii, OGIZ, Moscow-Leningrad, 1947 (Russian). MR 0025598
- S. Bochner, A theorem on Fourier-Stieltjes integrals, Bull. Amer. Math. Soc. 40 (1934), no. 4, 271–276. MR 1562834, DOI 10.1090/S0002-9904-1934-05843-9
- Karel de Leeuw and Carl Herz, An invariance property of spectral synthesis, Illinois J. Math. 9 (1965), 220–229. MR 179539
- Raouf Doss, On the transform of a singular or an absolutely continuous measure, Proc. Amer. Math. Soc. 19 (1968), 361–363. MR 222569, DOI 10.1090/S0002-9939-1968-0222569-4
- W. F. Eberlein, Characterizations of Fourier-Stieltjes transforms, Duke Math. J. 22 (1955), 465–468. MR 72424, DOI 10.1215/S0012-7094-55-02251-1
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. MR 551496, DOI 10.1007/978-1-4419-8638-2
- Haskell P. Rosenthal, A characterization of restrictions of Fourier-Stieltjes transforms, Pacific J. Math. 23 (1967), 403–418. MR 219996, DOI 10.2140/pjm.1967.23.403
- Walter Rudin, The extension problem for positive-definite functions, Illinois J. Math. 7 (1963), 532–539. MR 151796
- Walter Rudin, Modifications of Fourier transforms, Proc. Amer. Math. Soc. 19 (1968), 1069–1074. MR 240556, DOI 10.1090/S0002-9939-1968-0240556-7
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 153 (1971), 211-221
- MSC: Primary 42.52
- DOI: https://doi.org/10.1090/S0002-9947-1971-0268597-9
- MathSciNet review: 0268597