Generalizations of algebras
Authors:
R. R. Colby and E. A. Rutter
Journal:
Trans. Amer. Math. Soc. 153 (1971), 371-386
MSC:
Primary 16.40
DOI:
https://doi.org/10.1090/S0002-9947-1971-0269686-5
MathSciNet review:
0269686
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: This paper consists of three parts. The first is devoted to investigating the equivalence and left-right symmetry of several conditions known to characterize finite dimensional algebras which have a unique minimal faithful representation-- QF- algebras--in the class of left perfect rings. It is shown that the following conditions are equivalent and imply their right-hand analog:
contains a faithful
-injective left ideal,
contains a faithful
-projective injective left ideal; the injective hulls of projective left
-modules are projective, and the projective covers of injective left
-modules are injective. Moreover, these rings are shown to be semi-primary and to include all left perfect rings with faithful injective left and right ideals.
The second section is concerned with the endomorphism ring of a projective module over a hereditary or semihereditary ring. More specifically we consider the question of when such an endomorphism ring is hereditary or semihereditary.
In the third section we establish the equivalence of a number of conditions similar to those considered in the first section for the class of hereditary rings and obtain a structure theorem for this class of hereditary rings. The rings considered are shown to be isomorphic to finite direct sums of complete blocked triangular matrix rings each over a division ring.
- [1] Felix Albrecht, On projective modules over semi-hereditary rings, Proc. Amer. Math. Soc. 12 (1961), 638–639. MR 126470, https://doi.org/10.1090/S0002-9939-1961-0126470-X
- [2] Maurice Auslander, On the dimension of modules and algebras. III. Global dimension, Nagoya Math. J. 9 (1955), 67–77. MR 74406
- [3] Hyman Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466–488. MR 157984, https://doi.org/10.1090/S0002-9947-1960-0157984-8
- [4] Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
- [5] P. M. Cohn, Quadratic extensions of skew fields, Proc. London Math. Soc. (3) 11 (1961), 531–556. MR 0136633, https://doi.org/10.1112/plms/s3-11.1.531
- [6] R. R. Colby and Edgar A. Rutter Jr., Semi-primary 𝑄𝐹-3 rings, Nagoya Math. J. 32 (1968), 253–258. MR 230762
- [7] Robert R. Colby and Edgar A. Rutter Jr., Semi-perfect 𝑄𝐹-3 and 𝑃𝑃-rings, Osaka Math. J. 5 (1968), 99–102. MR 233847
- [8] R. R. Colby and E. A. Rutter Jr., 𝑄𝐹-3 rings with zero singular ideal, Pacific J. Math. 28 (1969), 303–308. MR 244318
- [9] B. Eckmann and A. Schopf, Über injektive Moduln, Arch. Math. (Basel) 4 (1953), 75–78 (German). MR 55978, https://doi.org/10.1007/BF01899665
- [10] Samuel Eilenberg, Homological dimension and syzygies, Ann. of Math. (2) 64 (1956), 328–336. MR 82489, https://doi.org/10.2307/1969977
- [11] Carl Faith, Lectures on injective modules and quotient rings, Lecture Notes in Mathematics, No. 49, Springer-Verlag, Berlin-New York, 1967. MR 0227206
- [12] Carl Faith, Rings with ascending condition on annihilators, Nagoya Math. J. 27 (1966), 179–191. MR 193107
- [13] Carl Faith and Elbert A. Walker, Direct-sum representations of injective modules, J. Algebra 5 (1967), 203–221. MR 207760, https://doi.org/10.1016/0021-8693(67)90035-X
- [14] Kent R. Fuller, The structure of 𝑄𝐹-3 rings, Trans. Amer. Math. Soc. 134 (1968), 343–354. MR 227225, https://doi.org/10.1090/S0002-9947-1968-0227225-9
- [15] Kent R. Fuller, On indecomposable injectives over artinian rings, Pacific J. Math. 29 (1969), 115–135. MR 246917
- [16] A. W. Goldie, Semi-prime rings with maximum condition, Proc. London Math. Soc. (3) 10 (1960), 201–220. MR 0111766, https://doi.org/10.1112/plms/s3-10.1.201
- [17] A. W. Goldie, Torsion-free modules and rings, J. Algebra 1 (1964), 268–287. MR 164991, https://doi.org/10.1016/0021-8693(64)90023-7
- [18] Manabu Harada, On semi-primary 𝑃𝑃-rings, Osaka Math. J. 2 (1965), 153–161. MR 204457
- [19]
-, QF-
and semi-primary PP-rings. II, Osaka J. Math. 3 (1966), 21-27. MR 34 #5874.
- [20] Nathan Jacobson, Structure of rings, American Mathematical Society Colloquium Publications, Vol. 37. Revised edition, American Mathematical Society, Providence, R.I., 1964. MR 0222106
- [21] J. P. Jans, Projective injective modules, Pacific J. Math. 9 (1959), 1103–1108. MR 112904
- [22] James P. Jans, Rings and homology, Holt, Rinehart and Winston, New York, 1964. MR 0163944
- [23] Irving Kaplansky, Projective modules, Ann. of Math (2) 68 (1958), 372–377. MR 0100017, https://doi.org/10.2307/1970252
- [24] Lawrence Levy, Torsion-free and divisible modules over non-integral-domains, Canadian J. Math. 15 (1963), 132–151. MR 142586, https://doi.org/10.4153/CJM-1963-016-1
- [25] H. Y. Mochizuki, On the double commutator algebra of 𝑄𝐹-3 algebras, Nagoya Math. J. 25 (1965), 221–230. MR 177007
- [26] Kiiti Morita, Duality for modules and its applications to the theory of rings with minimum condition, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 6 (1958), 83–142. MR 96700
- [27]
-, Duality in QF-
rings, Math. Z. 108 (1969), 237-252.
- [28] Bruno J. Müller, Dominant dimension of semi-primary rings, J. Reine Angew. Math. 232 (1968), 173–179. MR 233854, https://doi.org/10.1515/crll.1968.232.173
- [29] B. L. Osofsky, Rings all of whose finitely generated modules are injective, Pacific J. Math. 14 (1964), 645–650. MR 161886
- [30] B. L. Osofsky, A generalization of quasi-Frobenius rings, J. Algebra 4 (1966), 373–387. MR 204463, https://doi.org/10.1016/0021-8693(66)90028-7
- [31] B. L. Osofsky, Noninjective cyclic modules, Proc. Amer. Math. Soc. 19 (1968), 1383–1384. MR 231857, https://doi.org/10.1090/S0002-9939-1968-0231857-7
- [32] Francis L. Sandomierski, Semisimple maximal quotient rings, Trans. Amer. Math. Soc. 128 (1967), 112–120. MR 214624, https://doi.org/10.1090/S0002-9947-1967-0214624-3
- [33] Francis L. Sandomierski, Nonsingular rings, Proc. Amer. Math. Soc. 19 (1968), 225–230. MR 219568, https://doi.org/10.1090/S0002-9939-1968-0219568-5
- [34] Lance W. Small, Semihereditary rings, Bull. Amer. Math. Soc. 73 (1967), 656–658. MR 212051, https://doi.org/10.1090/S0002-9904-1967-11812-3
- [35] Hiroyuki Tachikawa, On left 𝑄𝐹-3 rings, Pacific J. Math. 32 (1970), 255–268. MR 257148
- [36] R. M. Thrall, Some generalization of quasi-Frobenius algebras, Trans. Amer. Math. Soc. 64 (1948), 173–183. MR 26048, https://doi.org/10.1090/S0002-9947-1948-0026048-0
- [37] Kenneth G. Wolfson, Baer rings of endomorphisms, Math. Ann. 143 (1961), 19–28. MR 122842, https://doi.org/10.1007/BF01351889
Retrieve articles in Transactions of the American Mathematical Society with MSC: 16.40
Retrieve articles in all journals with MSC: 16.40
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1971-0269686-5
Keywords:
QF- ring,
left perfect ring,
unique minimal faithful module,
faithful
-injective left ideal,
faithful
-projective injective left ideal,
injective hull projective,
projective cover injective duality,
projective module,
endomorphism ring,
hereditary ring,
semihereditary ring
Article copyright:
© Copyright 1971
American Mathematical Society