Generalizations of $\textrm {QF}-3$ algebras
HTML articles powered by AMS MathViewer
- by R. R. Colby and E. A. Rutter
- Trans. Amer. Math. Soc. 153 (1971), 371-386
- DOI: https://doi.org/10.1090/S0002-9947-1971-0269686-5
- PDF | Request permission
Abstract:
This paper consists of three parts. The first is devoted to investigating the equivalence and left-right symmetry of several conditions known to characterize finite dimensional algebras which have a unique minimal faithful representationβ QF-$3$ algebrasβin the class of left perfect rings. It is shown that the following conditions are equivalent and imply their right-hand analog: $R$ contains a faithful $\Sigma$-injective left ideal, $R$ contains a faithful $II$-projective injective left ideal; the injective hulls of projective left $R$-modules are projective, and the projective covers of injective left $R$-modules are injective. Moreover, these rings are shown to be semi-primary and to include all left perfect rings with faithful injective left and right ideals. The second section is concerned with the endomorphism ring of a projective module over a hereditary or semihereditary ring. More specifically we consider the question of when such an endomorphism ring is hereditary or semihereditary. In the third section we establish the equivalence of a number of conditions similar to those considered in the first section for the class of hereditary rings and obtain a structure theorem for this class of hereditary rings. The rings considered are shown to be isomorphic to finite direct sums of complete blocked triangular matrix rings each over a division ring.References
- Felix Albrecht, On projective modules over semi-hereditary rings, Proc. Amer. Math. Soc. 12 (1961), 638β639. MR 126470, DOI 10.1090/S0002-9939-1961-0126470-X
- Maurice Auslander, On the dimension of modules and algebras. III. Global dimension, Nagoya Math. J. 9 (1955), 67β77. MR 74406, DOI 10.1017/S0027763000023291
- Hyman Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466β488. MR 157984, DOI 10.1090/S0002-9947-1960-0157984-8
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
- P. M. Cohn, Quadratic extensions of skew fields, Proc. London Math. Soc. (3) 11 (1961), 531β556. MR 136633, DOI 10.1112/plms/s3-11.1.531
- R. R. Colby and Edgar A. Rutter Jr., Semi-primary $\textrm {QF}-3$ rings, Nagoya Math. J. 32 (1968), 253β258. MR 230762, DOI 10.1017/S0027763000026672
- Robert R. Colby and Edgar A. Rutter Jr., Semi-perfect $\textrm {QF}$-$3$ and $\textrm {PP}$-rings, Osaka Math. J. 5 (1968), 99β102. MR 233847
- R. R. Colby and E. A. Rutter Jr., $\textrm {QF}-3$ rings with zero singular ideal, Pacific J. Math. 28 (1969), 303β308. MR 244318, DOI 10.2140/pjm.1969.28.303
- B. Eckmann and A. Schopf, Γber injektive Moduln, Arch. Math. (Basel) 4 (1953), 75β78 (German). MR 55978, DOI 10.1007/BF01899665
- Samuel Eilenberg, Homological dimension and syzygies, Ann. of Math. (2) 64 (1956), 328β336. MR 82489, DOI 10.2307/1969977
- Carl Faith, Lectures on injective modules and quotient rings, Lecture Notes in Mathematics, No. 49, Springer-Verlag, Berlin-New York, 1967. MR 0227206, DOI 10.1007/BFb0074319
- Carl Faith, Rings with ascending condition on annihilators, Nagoya Math. J. 27 (1966), 179β191. MR 193107, DOI 10.1017/S0027763000011983
- Carl Faith and Elbert A. Walker, Direct-sum representations of injective modules, J. Algebra 5 (1967), 203β221. MR 207760, DOI 10.1016/0021-8693(67)90035-X
- Kent R. Fuller, The structure of $\textrm {QF}-3$ rings, Trans. Amer. Math. Soc. 134 (1968), 343β354. MR 227225, DOI 10.1090/S0002-9947-1968-0227225-9
- Kent R. Fuller, On indecomposable injectives over artinian rings, Pacific J. Math. 29 (1969), 115β135. MR 246917, DOI 10.2140/pjm.1969.29.115
- A. W. Goldie, Semi-prime rings with maximum condition, Proc. London Math. Soc. (3) 10 (1960), 201β220. MR 111766, DOI 10.1112/plms/s3-10.1.201
- A. W. Goldie, Torsion-free modules and rings, J. Algebra 1 (1964), 268β287. MR 164991, DOI 10.1016/0021-8693(64)90023-7
- Manabu Harada, On semi-primary $PP$-rings, Osaka Math. J. 2 (1965), 153β161. MR 204457 β, QF-$3$ and semi-primary PP-rings. II, Osaka J. Math. 3 (1966), 21-27. MR 34 #5874.
- Nathan Jacobson, Structure of rings, Revised edition, American Mathematical Society Colloquium Publications, Vol. 37, American Mathematical Society, Providence, R.I., 1964. MR 0222106
- J. P. Jans, Projective injective modules, Pacific J. Math. 9 (1959), 1103β1108. MR 112904, DOI 10.2140/pjm.1959.9.1103
- James P. Jans, Rings and homology, Holt, Rinehart and Winston, New York, 1964. MR 0163944
- Irving Kaplansky, Projective modules, Ann. of Math. (2) 68 (1958), 372β377. MR 0100017, DOI 10.2307/1970252
- Lawrence Levy, Torsion-free and divisible modules over non-integral-domains, Canadian J. Math. 15 (1963), 132β151. MR 142586, DOI 10.4153/CJM-1963-016-1
- H. Y. Mochizuki, On the double commutator algebra of $QF-3$ algebras, Nagoya Math. J. 25 (1965), 221β230. MR 177007, DOI 10.1017/S0027763000011557
- Kiiti Morita, Duality for modules and its applications to the theory of rings with minimum condition, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 6 (1958), 83β142. MR 96700 β, Duality in QF-$3$ rings, Math. Z. 108 (1969), 237-252.
- Bruno J. MΓΌller, Dominant dimension of semi-primary rings, J. Reine Angew. Math. 232 (1968), 173β179. MR 233854, DOI 10.1515/crll.1968.232.173
- B. L. Osofsky, Rings all of whose finitely generated modules are injective, Pacific J. Math. 14 (1964), 645β650. MR 161886, DOI 10.2140/pjm.1964.14.645
- B. L. Osofsky, A generalization of quasi-Frobenius rings, J. Algebra 4 (1966), 373β387. MR 204463, DOI 10.1016/0021-8693(66)90028-7
- B. L. Osofsky, Noninjective cyclic modules, Proc. Amer. Math. Soc. 19 (1968), 1383β1384. MR 231857, DOI 10.1090/S0002-9939-1968-0231857-7
- Francis L. Sandomierski, Semisimple maximal quotient rings, Trans. Amer. Math. Soc. 128 (1967), 112β120. MR 214624, DOI 10.1090/S0002-9947-1967-0214624-3
- Francis L. Sandomierski, Nonsingular rings, Proc. Amer. Math. Soc. 19 (1968), 225β230. MR 219568, DOI 10.1090/S0002-9939-1968-0219568-5
- Lance W. Small, Semihereditary rings, Bull. Amer. Math. Soc. 73 (1967), 656β658. MR 212051, DOI 10.1090/S0002-9904-1967-11812-3
- Hiroyuki Tachikawa, On left $\textrm {QF}-3$ rings, Pacific J. Math. 32 (1970), 255β268. MR 257148, DOI 10.2140/pjm.1970.32.255
- R. M. Thrall, Some generalization of quasi-Frobenius algebras, Trans. Amer. Math. Soc. 64 (1948), 173β183. MR 26048, DOI 10.1090/S0002-9947-1948-0026048-0
- Kenneth G. Wolfson, Baer rings of endomorphisms, Math. Ann. 143 (1961), 19β28. MR 122842, DOI 10.1007/BF01351889
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 153 (1971), 371-386
- MSC: Primary 16.40
- DOI: https://doi.org/10.1090/S0002-9947-1971-0269686-5
- MathSciNet review: 0269686