Entropy for group endomorphisms and homogeneous spaces
Author:
Rufus Bowen
Journal:
Trans. Amer. Math. Soc. 153 (1971), 401-414
MSC:
Primary 28.70; Secondary 22.00
DOI:
https://doi.org/10.1090/S0002-9947-1971-0274707-X
Erratum:
Trans. Amer. Math. Soc. 181 (1973), 509-510.
MathSciNet review:
0274707
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Topological entropy ${h_d}(T)$ is defined for a uniformly continuous map on a metric space. General statements are proved about this entropy, and it is calculated for affine maps of Lie groups and certain homogeneous spaces. We compare ${h_d}(T)$ with measure theoretic entropy $h(T)$; in particular $h(T) = {h_d}(T)$ for Haar measure and affine maps $T$ on compact metrizable groups. A particular case of this yields the well-known formula for $h(T)$ when $T$ is a toral automorphism.
- R. L. Adler, A. G. Konheim, and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309–319. MR 175106, DOI https://doi.org/10.1090/S0002-9947-1965-0175106-9
- Rufus Bowen, Periodic points and measures for Axiom $A$ diffeomorphisms, Trans. Amer. Math. Soc. 154 (1971), 377–397. MR 282372, DOI https://doi.org/10.1090/S0002-9947-1971-0282372-0
- L. Wayne Goodwyn, Topological entropy bounds measure-theoretic entropy, Proc. Amer. Math. Soc. 23 (1969), 679–688. MR 247030, DOI https://doi.org/10.1090/S0002-9939-1969-0247030-3 ---, The product theorem for topological entropy (to appear).
- James R. Munkres, Elementary differential topology, Annals of Mathematics Studies, No. 54, Princeton University Press, Princeton, N.J., 1963. Lectures given at Massachusetts Institute of Technology, Fall, 1961. MR 0163320
- William Parry, Entropy and generators in ergodic theory, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0262464
- Ja. Sinaĭ, On the concept of entropy for a dynamic system, Dokl. Akad. Nauk SSSR 124 (1959), 768–771 (Russian). MR 0103256
- V. A. Rohlin, Exact endomorphisms of a Lebesgue space, Izv. Akad. Nauk SSSR Ser. Mat. 25 (1961), 499–530 (Russian). MR 0143873
- A. L. Genis, Metric properties of the endomorphisms of an $n$-dimensional torus, Dokl. Akad. Nauk SSSR 138 (1961), 991–993 (Russian). MR 0202907
- D. Z. Arov, Calculation of entropy for a class of group endomorphisms, Zap. Meh.-Mat. Fak. Har′kov. Gos. Univ. i Har′kov. Mat. Obšč. (4) 30 (1964), 48–69 (Russian). MR 0213507
- K. Krzyżewski and W. Szlenk, On invariant measures for expanding differentiable mappings, Studia Math. 33 (1969), 83–92. MR 245761, DOI https://doi.org/10.4064/sm-33-1-83-92 K. Berg, Thesis, Minnesota. ---, Convolution of invariant measures, maximum entropy (to appear).
- Deane Montgomery and Leo Zippin, Topological transformation groups, Interscience Publishers, New York-London, 1955. MR 0073104
- Harvey B. Keynes, Lifting of topological entropy, Proc. Amer. Math. Soc. 24 (1970), 440–445. MR 274710, DOI https://doi.org/10.1090/S0002-9939-1970-0274710-4
- Claude Chevalley, Theory of Lie groups. I, Princeton University Press, Princeton, N. J., 1946 1957. MR 0082628
- D. V. Anosov and Ja. G. Sinaĭ, Certain smooth ergodic systems, Uspehi Mat. Nauk 22 (1967), no. 5 (137), 107–172 (Russian). MR 0224771
- Lynn H. Loomis, An introduction to abstract harmonic analysis, D. Van Nostrand Company, Inc., Toronto-New York-London, 1953. MR 0054173
- William Parry, Ergodic properties of affine transformations and flows on nilmanifolds, Amer. J. Math. 91 (1969), 757–771. MR 260975, DOI https://doi.org/10.2307/2373350
Retrieve articles in Transactions of the American Mathematical Society with MSC: 28.70, 22.00
Retrieve articles in all journals with MSC: 28.70, 22.00
Additional Information
Keywords:
Entropy,
<IMG WIDTH="20" HEIGHT="20" ALIGN="BOTTOM" BORDER="0" SRC="images/img1.gif" ALT="$T$">-homogeneous measure
Article copyright:
© Copyright 1971
American Mathematical Society