Entropy for group endomorphisms and homogeneous spaces
Author:
Rufus Bowen
Journal:
Trans. Amer. Math. Soc. 153 (1971), 401-414
MSC:
Primary 28.70; Secondary 22.00
DOI:
https://doi.org/10.1090/S0002-9947-1971-0274707-X
Erratum:
Trans. Amer. Math. Soc. 181 (1973), 509-510.
MathSciNet review:
0274707
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Topological entropy is defined for a uniformly continuous map on a metric space. General statements are proved about this entropy, and it is calculated for affine maps of Lie groups and certain homogeneous spaces. We compare
with measure theoretic entropy
; in particular
for Haar measure and affine maps
on compact metrizable groups. A particular case of this yields the well-known formula for
when
is a toral automorphism.
- [1] R. L. Adler, A. G. Konheim, and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309–319. MR 175106, https://doi.org/10.1090/S0002-9947-1965-0175106-9
- [2] Rufus Bowen, Periodic points and measures for Axiom 𝐴 diffeomorphisms, Trans. Amer. Math. Soc. 154 (1971), 377–397. MR 282372, https://doi.org/10.1090/S0002-9947-1971-0282372-0
- [3] L. Wayne Goodwyn, Topological entropy bounds measure-theoretic entropy, Proc. Amer. Math. Soc. 23 (1969), 679–688. MR 247030, https://doi.org/10.1090/S0002-9939-1969-0247030-3
- [4] -, The product theorem for topological entropy (to appear).
- [5] James R. Munkres, Elementary differential topology, Lectures given at Massachusetts Institute of Technology, Fall, vol. 1961, Princeton University Press, Princeton, N.J., 1963. MR 0163320
- [6] William Parry, Entropy and generators in ergodic theory, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0262464
- [7] Ja. Sinaĭ, On the concept of entropy for a dynamic system, Dokl. Akad. Nauk SSSR 124 (1959), 768–771 (Russian). MR 0103256
- [8] V. A. Rohlin, Exact endomorphisms of a Lebesgue space, Izv. Akad. Nauk SSSR Ser. Mat. 25 (1961), 499–530 (Russian). MR 0143873
- [9] A. L. Genis, Metric properties of the endomorphisms of an 𝑛-dimensional torus, Dokl. Akad. Nauk SSSR 138 (1961), 991–993 (Russian). MR 0202907
- [10] D. Z. Arov, Calculation of entropy for a class of group endomorphisms, Zap. Meh.-Mat. Fak. Har′kov. Gos. Univ. i Har′kov. Mat. Obšč. (4) 30 (1964), 48–69 (Russian). MR 0213507
- [11] K. Krzyżewski and W. Szlenk, On invariant measures for expanding differentiable mappings, Studia Math. 33 (1969), 83–92. MR 245761, https://doi.org/10.4064/sm-33-1-83-92
- [12] K. Berg, Thesis, Minnesota.
- [13] -, Convolution of invariant measures, maximum entropy (to appear).
- [14] Deane Montgomery and Leo Zippin, Topological transformation groups, Interscience Publishers, New York-London, 1955. MR 0073104
- [15] Harvey B. Keynes, Lifting of topological entropy, Proc. Amer. Math. Soc. 24 (1970), 440–445. MR 274710, https://doi.org/10.1090/S0002-9939-1970-0274710-4
- [16] Claude Chevalley, Theory of Lie groups. I, Princeton University Press, Princeton, N. J., 1946 1957. MR 0082628
- [17] D. V. Anosov and Ja. G. Sinaĭ, Certain smooth ergodic systems, Uspehi Mat. Nauk 22 (1967), no. 5 (137), 107–172 (Russian). MR 0224771
- [18] Lynn H. Loomis, An introduction to abstract harmonic analysis, D. Van Nostrand Company, Inc., Toronto-New York-London, 1953. MR 0054173
- [19] William Parry, Ergodic properties of affine transformations and flows on nilmanifolds, Amer. J. Math. 91 (1969), 757–771. MR 260975, https://doi.org/10.2307/2373350
Retrieve articles in Transactions of the American Mathematical Society with MSC: 28.70, 22.00
Retrieve articles in all journals with MSC: 28.70, 22.00
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1971-0274707-X
Keywords:
Entropy,
-homogeneous measure
Article copyright:
© Copyright 1971
American Mathematical Society