Representations of free metabelian $\mathcal {D}_\pi$-groups
HTML articles powered by AMS MathViewer
- by John F. Ledlie
- Trans. Amer. Math. Soc. 153 (1971), 307-346
- DOI: https://doi.org/10.1090/S0002-9947-1971-0276341-4
- PDF | Request permission
Abstract:
For $\pi$ a set of primes, a ${\mathcal {D}_\pi }$-group is a group $G$ with the property that, for every element $g$ in $G$ and every prime $p$ in $\pi ,g$ has a unique $p$th root in $G$. Two faithful representations of free metabelian ${\mathcal {D}_\pi }$-groups are established: the first representation is inside a suitable power series algebra and shows that free metabelian ${\mathcal {D}_\pi }$-groups are residually torsion-free nilpotent; the second is in terms of two-by-two matrices and is analogous to W. Magnus’ representation of free metabelian groups using two-by-two matrices. In a subsequent paper [12], these representations will be used to derive several properties of free metabelian ${\mathcal {D}_\pi }$-groups.References
- Gilbert Baumslag, Some aspects of groups with unique roots, Acta Math. 104 (1960), 217–303. MR 122859, DOI 10.1007/BF02546390
- Gilbert Baumslag, Some remarks on nilpotent groups with roots, Proc. Amer. Math. Soc. 12 (1961), 262–267. MR 123609, DOI 10.1090/S0002-9939-1961-0123609-7
- Gilbert Baumslag, Some subgroup theorems for free ${\mathfrak {v}}$-groups, Trans. Amer. Math. Soc. 108 (1963), 516–525. MR 154919, DOI 10.1090/S0002-9947-1963-0154919-1
- Gilbert Baumslag, Residual nilpotence and relations in free groups, J. Algebra 2 (1965), 271–282. MR 179239, DOI 10.1016/0021-8693(65)90008-6
- Gilbert Baumslag, A representation of the wreath product of two torsion-free abelian groups in a power series ring, Proc. Amer. Math. Soc. 17 (1966), 1159–1165. MR 207809, DOI 10.1090/S0002-9939-1966-0207809-8 G. Birkhoff, On the structure of abstract algebras, Proc. Cambridge Philos. Soc. 31 (1935), 433-454.
- S. N. Černikov, Periodic $ZA$-extensions of complete groups, Mat. Sbornik N.S. 27 (69) (1950), 117–128 (Russian). MR 0036758 P. Hall, Nilpotent groups, Lecture Notes, Canadian Math. Congress, University of Alberta, 1957.
- Graham Higman, Groups and rings having automorphisms without non-trivial fixed elements, J. London Math. Soc. 32 (1957), 321–334. MR 89204, DOI 10.1112/jlms/s1-32.3.321
- P. G. Kontorovič, Groups with a basis of partition. III, Mat. Sbornik N.S. 22(64) (1948), 79–100 (Russian). MR 0024435
- A. G. Kurosh, The theory of groups, Chelsea Publishing Co., New York, 1960. Translated from the Russian and edited by K. A. Hirsch. 2nd English ed. 2 volumes. MR 0109842 J. F. Ledlie, Properties of free metabelian ${\mathcal {D}_n}$-groups (to appear).
- F. W. Levi, Ordered groups, Proc. Indian Acad. Sci., Sect. A. 16 (1942), 256–263. MR 0007779, DOI 10.1007/BF03174799 T. MacHenry, Free metabelian ${\mathcal {D}_\pi }$-groups: A construction, Ph.D. thesis, Adelphi University, Garden City, N. J., 1962.
- Wilhelm Magnus, Beziehungen zwischen Gruppen und Idealen in einem speziellen Ring, Math. Ann. 111 (1935), no. 1, 259–280 (German). MR 1512992, DOI 10.1007/BF01472217
- Wilhelm Magnus, On a theorem of Marshall Hall, Ann. of Math. (2) 40 (1939), 764–768. MR 262, DOI 10.2307/1968892 W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, Pure and Appl. Math., vol. 13, Interscience, New York, 1966. MR 34 #7617.
- A. I. Mal′cev, Nilpotent torsion-free groups, Izv. Akad. Nauk SSSR Ser. Mat. 13 (1949), 201–212 (Russian). MR 0028843
- B. H. Neumann, Adjunction of elements to groups, J. London Math. Soc. 18 (1943), 4–11. MR 8808, DOI 10.1112/jlms/s1-18.1.4 —, Special topics in algebra: Universal algebra, Lecture notes prepared by P. M. Neumann, Courant Inst. Math. Sci., New York University, 1962.
- Hanna Neumann, Varieties of groups, Springer-Verlag New York, Inc., New York, 1967. MR 0215899, DOI 10.1007/978-3-642-88599-0
- Joseph J. Rotman, The theory of groups. An introduction, Allyn and Bacon, Inc., Boston, Mass., 1965. MR 0204499
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 153 (1971), 307-346
- MSC: Primary 20.40
- DOI: https://doi.org/10.1090/S0002-9947-1971-0276341-4
- MathSciNet review: 0276341