Integrally closed subrings of an integral domain
HTML articles powered by AMS MathViewer
- by Robert Gilmer and Joe Mott
- Trans. Amer. Math. Soc. 154 (1971), 239-250
- DOI: https://doi.org/10.1090/S0002-9947-1971-0271082-1
- PDF | Request permission
Abstract:
Let D be an integral domain with identity having quotient field K. This paper gives necessary and sufficient conditions on D in order that each integrally closed subring of D should belong to some subclass of the class of integrally closed domains; some of the subclasses considered are the completely integrally closed domains, Prüfer domains, and Dedekind domains.References
- Jimmy T. Arnold and Robert Gilmer, Idempotent ideals and unions of nets of Prüfer domains, J. Sci. Hiroshima Univ. Ser. A-I Math. 31 (1967), 131–145. MR 227156
- N. Bourbaki, Éléments de mathématique. Fasc. XXXI. Algèbre commutative. Chapitre 7: Diviseurs, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1314, Hermann, Paris, 1965 (French). MR 0260715
- J. W. Brewer and J. L. Mott, Integral domains of finite character, J. Reine Angew. Math. 241 (1970), 34–41. MR 260717, DOI 10.1515/crll.1970.241.34
- I. S. Cohen and Oscar Zariski, A fundamental inequality in the theory of extensions of valuations, Illinois J. Math. 1 (1957), 1–8. MR 83982
- Edward D. Davis, Overrings of commutative rings. II. Integrally closed overrings, Trans. Amer. Math. Soc. 110 (1964), 196–212. MR 156868, DOI 10.1090/S0002-9947-1964-0156868-2
- Otto Endler, Endliche separable Körpererweiterungen mit vorgeschriebenen Bewertungsfortsetzungen. I, Abh. Math. Sem. Univ. Hamburg 33 (1969), 80–101 (German). MR 242797, DOI 10.1007/BF02992808
- Robert Gilmer, Integral domains with Noetherian subrings, Comment. Math. Helv. 45 (1970), 129–134. MR 262216, DOI 10.1007/BF02567320
- Robert W. Gilmer Jr., Integral domains which are almost Dedekind, Proc. Amer. Math. Soc. 15 (1964), 813–818. MR 166212, DOI 10.1090/S0002-9939-1964-0166212-8
- Robert W. Gilmer, Multiplicative ideal theory, Queen’s Papers in Pure and Applied Mathematics, No. 12, Queen’s University, Kingston, Ont., 1968. MR 0229624
- Robert Gilmer and Jack Ohm, Integral domains with quotient overrings, Math. Ann. 153 (1964), 97–103. MR 159835, DOI 10.1007/BF01361178
- Malcolm Griffin, Families of finite character and essential valuations, Trans. Amer. Math. Soc. 130 (1968), 75–85. MR 218336, DOI 10.1090/S0002-9947-1968-0218336-2
- William J. Heinzer, Some properties of integral closure, Proc. Amer. Math. Soc. 18 (1967), 749–753. MR 214580, DOI 10.1090/S0002-9939-1967-0214580-3 W. Krull, Allgemeine Bewertungstheorie, J. Reine Angew. Math. 167 (1932), 160-196.
- Wolfgang Krull, Über einen Existenzsatz der Bewertungstheorie, Abh. Math. Sem. Univ. Hamburg 23 (1959), 29–35 (German). MR 104653, DOI 10.1007/BF02941023
- Th. Motzkin, The Euclidean algorithm, Bull. Amer. Math. Soc. 55 (1949), 1142–1146. MR 32592, DOI 10.1090/S0002-9904-1949-09344-8
- Jack Ohm, Some counterexamples related to integral closure in $D[[x]]$, Trans. Amer. Math. Soc. 122 (1966), 321–333. MR 202753, DOI 10.1090/S0002-9947-1966-0202753-9
- Jack Ohm, Integral closure and $(x,\,y)^{n}=(x^{n},\,y^{n})$, Monatsh. Math. 71 (1967), 32–39. MR 204448, DOI 10.1007/BF01299957
- Robert L. Pendleton, A characterization of $Q$-domains, Bull. Amer. Math. Soc. 72 (1966), 499–500. MR 190164, DOI 10.1090/S0002-9904-1966-11514-8
- P. Ribenboim, Anneaux normaux réels à caractère fini, Summa Brasil. Math. 3 (1956), 213–253 (French). MR 97391
- Peter Roquette, On the prolongation of valuations, Trans. Amer. Math. Soc. 88 (1958), 42–56. MR 100589, DOI 10.1090/S0002-9947-1958-0100589-6
- Oscar Zariski and Pierre Samuel, Commutative algebra, Volume I, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, New Jersey, 1958. With the cooperation of I. S. Cohen. MR 0090581 —, Commutative algebra, Vol. 2, University Series in Higher Math., Van Nostrand, Princeton, N. J., 1960. MR 22 #11006.
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 154 (1971), 239-250
- MSC: Primary 13.15
- DOI: https://doi.org/10.1090/S0002-9947-1971-0271082-1
- MathSciNet review: 0271082