Generic stability properties of periodic points
HTML articles powered by AMS MathViewer
- by K. R. Meyer
- Trans. Amer. Math. Soc. 154 (1971), 273-277
- DOI: https://doi.org/10.1090/S0002-9947-1971-0271490-9
- PDF | Request permission
Abstract:
A classification of the periodic points of a generic area-perserving diffeomorphism which depends on a parameter is given. The stability properties of each periodic point in the classification is decided.References
- George D. Birkhoff, Dynamical systems, American Mathematical Society Colloquium Publications, Vol. IX, American Mathematical Society, Providence, R.I., 1966. With an addendum by Jurgen Moser. MR 0209095
- Philip Hartman, Ordinary differential equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964. MR 0171038
- K. R. Meyer, Generic bifurcation of periodic points, Trans. Amer. Math. Soc. 149 (1970), 95–107. MR 259289, DOI 10.1090/S0002-9947-1970-0259289-X
- J. Moser, On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1962 (1962), 1–20. MR 147741
- Carl Ludwig Siegel, Vorlesungen über Himmelsmechanik, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1956 (German). MR 0080009
- D. L. Slotnick, Asymptotic behavior of solutions of canonical systems near a closed, unstable orbit, Contributions to the theory of nonlinear oscillations, Vol. IV, Annals of Mathematics Studies, no. 41, Princeton University Press, Princeton, N.J., 1958, pp. 85–110. MR 0101354 E. T. Whittaker and G. N. Watson, A course in modern analysis, 4th ed., Cambridge Univ. Press, New York, 1940.
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 154 (1971), 273-277
- MSC: Primary 34.51
- DOI: https://doi.org/10.1090/S0002-9947-1971-0271490-9
- MathSciNet review: 0271490