The theory of $p$-spaces with an application to convolution operators.
HTML articles powered by AMS MathViewer
- by Carl Herz
- Trans. Amer. Math. Soc. 154 (1971), 69-82
- DOI: https://doi.org/10.1090/S0002-9947-1971-0272952-0
- PDF | Request permission
Abstract:
The class of p-spaces is defined to consist of those Banach spaces B such that linear transformations between spaces of numerical ${L_p}$-functions naturally extend with the same bound to B-valued ${L_p}$-functions. Some properties of p-spaces are derived including norm inequalities which show that 2-spaces and Hilbert spaces are the same and that p-spaces are uniformly convex for $1 < p < \infty$. An ${L_q}$-space is a p-space iff $p \leqq q \leqq 2$ or $p \geqq q \geqq 2$; this leads to the theorem that, for an amenable group, a convolution operator on ${L_p}$ gives a convolution operator on ${L_q}$ with the same or smaller bound. Group representations in p-spaces are examined. Logical elementarity of notions related to p-spaces are discussed.References
- S. Bochner, Integration von Funktionen, deren Werte die Elemente eines Vectorraumes sind, Fund. Math. 20 (1933), 262-276.
- S. Bochner, Stable laws of probability and completely monotone functions, Duke Math. J. 3 (1937), no. 4, 726–728. MR 1546026, DOI 10.1215/S0012-7094-37-00360-0
- Jean Bretagnolle, Didier Dacunha-Castelle, and Jean-Louis Krivine, Lois stables et espaces $L^{p}$, Ann. Inst. H. Poincaré Sect. B (N.S.) 2 (1965/1966), 231–259 (French). MR 0203757
- James A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), no. 3, 396–414. MR 1501880, DOI 10.1090/S0002-9947-1936-1501880-4
- C. S. Herz, A class of negative-definite functions, Proc. Amer. Math. Soc. 14 (1963), 670–676. MR 158251, DOI 10.1090/S0002-9939-1963-0158251-7 P. Lévy, Théorie de l’addition des variables aléatoires, Gauthier-Villars, Paris, 1937. J. Marcinkiewicz and A. Zygmund, Quelques inégalités pour les opèrations linèaires, Fund. Math. 32 (1939), 115-121.
- Hidegorô Nakano, Über normierte teilweisegeordnete Moduln, Proc. Imp. Acad. Tokyo 17 (1941), 311–317 (German). MR 14174
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 154 (1971), 69-82
- MSC: Primary 22.65
- DOI: https://doi.org/10.1090/S0002-9947-1971-0272952-0
- MathSciNet review: 0272952