Cubes with knotted holes
HTML articles powered by AMS MathViewer
- by R. H. Bing and J. M. Martin
- Trans. Amer. Math. Soc. 155 (1971), 217-231
- DOI: https://doi.org/10.1090/S0002-9947-1971-0278287-4
- PDF | Request permission
Abstract:
The statement that a knot $K$ has Property ${\rm {P}}$ means that (1) if $C$ is a cube with aReferences
- J. W. Alexander and G. B. Briggs, On types of knotted curves, Ann. of Math. (2) 28 (1926/27), no. 1-4, 562–586. MR 1502807, DOI 10.2307/1968399
- R. H. Bing, Necessary and sufficient conditions that a $3$-manifold be $S^{3}$, Ann. of Math. (2) 68 (1958), 17–37. MR 95471, DOI 10.2307/1970041
- R. H. Bing, Correction to “Necessary and sufficient conditions that a $3$-manifold be $S^{3}$”, Ann. of Math. (2) 77 (1963), 210. MR 142115, DOI 10.2307/1970205 —, Some aspects of the topology of $3$-manifolds related to the Poincaré conjecture, Lectures on Modern Math., vol. 2, Wiley, New York, 1964, pp. 93-128. MR 30 #2474. —, Computing the fundamental group of the complement of curves, Washington State University, Pullman, Wash., 1965.
- Garrett Birkhoff and Saunders Mac Lane, A survey of modern algebra, 3rd ed., The Macmillan Company, New York; Collier Macmillan Ltd., London, 1965. MR 0177992 A. C. Conner, Splittable knots (preprint).
- H. S. M. Coxeter, The abstract groups $G^{m,n,p}$, Trans. Amer. Math. Soc. 45 (1939), no. 1, 73–150. MR 1501984, DOI 10.1090/S0002-9947-1939-1501984-9
- H. S. M. Coxeter, The abstract group $G^{3,\,7,\,16}$, Proc. Edinburgh Math. Soc. (2) 13 (1962), 47–61. MR 142621, DOI 10.1017/S0013091500014486
- R. H. Fox, A quick trip through knot theory, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 120–167. MR 0140099 H. Gluck, Ph.D. Thesis, Princeton University, Princeton, N. J., 1961.
- John Hempel, Construction of orientable $3$-manifolds, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 207–212. MR 0140115
- John Hempel, A simply connected $3$-manifold is $S^{3}$ if it is the sum of a solid torus and the complement of a torus knot, Proc. Amer. Math. Soc. 15 (1964), 154–158. MR 157365, DOI 10.1090/S0002-9939-1964-0157365-6
- W. B. R. Lickorish, A representation of orientable combinatorial $3$-manifolds, Ann. of Math. (2) 76 (1962), 531–540. MR 151948, DOI 10.2307/1970373
- Lee Neuwirth, The algebraic determination of the genus of knots, Amer. J. Math. 82 (1960), 791–798. MR 120648, DOI 10.2307/2372940
- Dieter Noga, Über den Aussenraum von Produktknoten und die Bedeutung der Fixgruppen, Math. Z. 101 (1967), 131–141 (German). MR 219054, DOI 10.1007/BF01136030
- C. D. Papakyriakopoulos, On solid tori, Proc. London Math. Soc. (3) 7 (1957), 281–299. MR 87944, DOI 10.1112/plms/s3-7.1.281
- C. D. Papakyriakopoulos, On Dehn’s lemma and the asphericity of knots, Ann. of Math. (2) 66 (1957), 1–26. MR 90053, DOI 10.2307/1970113 H. Poincaré, Second complément a l’analysis situs, Proc. London Math. Soc. (2) 32 (1900), 277-308. —, Cinquieme complément a l’analysis situs, Rend. Circ. Mat. Palermo 18 (1904), 45-110.
- H. F. Trotter, Non-invertible knots exist, Topology 2 (1963), 275–280. MR 158395, DOI 10.1016/0040-9383(63)90011-9
- Andrew H. Wallace, Modifications and cobounding manifolds, Canadian J. Math. 12 (1960), 503–528. MR 125588, DOI 10.4153/CJM-1960-045-7 J. H. C. Whitehead, On doubled knots, J. London Math. Soc. 12 (1937), 63-71.
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 155 (1971), 217-231
- MSC: Primary 55.20; Secondary 54.00
- DOI: https://doi.org/10.1090/S0002-9947-1971-0278287-4
- MathSciNet review: 0278287