## Cubes with knotted holes

HTML articles powered by AMS MathViewer

- by R. H. Bing and J. M. Martin PDF
- Trans. Amer. Math. Soc.
**155**(1971), 217-231 Request permission

## Abstract:

The statement that a knot $K$ has*Property*${\rm {P}}$ means that (1) if $C$ is a cube with a

## References

- J. W. Alexander and G. B. Briggs,
*On types of knotted curves*, Ann. of Math. (2)**28**(1926/27), no. 1-4, 562–586. MR**1502807**, DOI 10.2307/1968399 - R. H. Bing,
*Necessary and sufficient conditions that a $3$-manifold be $S^{3}$*, Ann. of Math. (2)**68**(1958), 17–37. MR**95471**, DOI 10.2307/1970041 - R. H. Bing,
*Correction to “Necessary and sufficient conditions that a $3$-manifold be $S^{3}$”*, Ann. of Math. (2)**77**(1963), 210. MR**142115**, DOI 10.2307/1970205
—, - Garrett Birkhoff and Saunders Mac Lane,
*A survey of modern algebra*, 3rd ed., The Macmillan Company, New York; Collier Macmillan Ltd., London, 1965. MR**0177992**
A. C. Conner, - H. S. M. Coxeter,
*The abstract groups $G^{m,n,p}$*, Trans. Amer. Math. Soc.**45**(1939), no. 1, 73–150. MR**1501984**, DOI 10.1090/S0002-9947-1939-1501984-9 - H. S. M. Coxeter,
*The abstract group $G^{3,\,7,\,16}$*, Proc. Edinburgh Math. Soc. (2)**13**(1962), 47–61. MR**142621**, DOI 10.1017/S0013091500014486 - R. H. Fox,
*A quick trip through knot theory*, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 120–167. MR**0140099**
H. Gluck, Ph.D. Thesis, Princeton University, Princeton, N. J., 1961.
- John Hempel,
*Construction of orientable $3$-manifolds*, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 207–212. MR**0140115** - John Hempel,
*A simply connected $3$-manifold is $S^{3}$ if it is the sum of a solid torus and the complement of a torus knot*, Proc. Amer. Math. Soc.**15**(1964), 154–158. MR**157365**, DOI 10.1090/S0002-9939-1964-0157365-6 - W. B. R. Lickorish,
*A representation of orientable combinatorial $3$-manifolds*, Ann. of Math. (2)**76**(1962), 531–540. MR**151948**, DOI 10.2307/1970373 - Lee Neuwirth,
*The algebraic determination of the genus of knots*, Amer. J. Math.**82**(1960), 791–798. MR**120648**, DOI 10.2307/2372940 - Dieter Noga,
*Über den Aussenraum von Produktknoten und die Bedeutung der Fixgruppen*, Math. Z.**101**(1967), 131–141 (German). MR**219054**, DOI 10.1007/BF01136030 - C. D. Papakyriakopoulos,
*On solid tori*, Proc. London Math. Soc. (3)**7**(1957), 281–299. MR**87944**, DOI 10.1112/plms/s3-7.1.281 - C. D. Papakyriakopoulos,
*On Dehn’s lemma and the asphericity of knots*, Ann. of Math. (2)**66**(1957), 1–26. MR**90053**, DOI 10.2307/1970113
H. Poincaré, - H. F. Trotter,
*Non-invertible knots exist*, Topology**2**(1963), 275–280. MR**158395**, DOI 10.1016/0040-9383(63)90011-9 - Andrew H. Wallace,
*Modifications and cobounding manifolds*, Canadian J. Math.**12**(1960), 503–528. MR**125588**, DOI 10.4153/CJM-1960-045-7
J. H. C. Whitehead,

*Some aspects of the topology of $3$-manifolds related to the Poincaré conjecture*, Lectures on Modern Math., vol. 2, Wiley, New York, 1964, pp. 93-128. MR

**30**#2474. —,

*Computing the fundamental group of the complement of curves*, Washington State University, Pullman, Wash., 1965.

*Splittable knots*(preprint).

*Second complément a l’analysis situs*, Proc. London Math. Soc. (2)

**32**(1900), 277-308. —,

*Cinquieme complément a l’analysis situs*, Rend. Circ. Mat. Palermo

**18**(1904), 45-110.

*On doubled knots*, J. London Math. Soc.

**12**(1937), 63-71.

## Additional Information

- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**155**(1971), 217-231 - MSC: Primary 55.20; Secondary 54.00
- DOI: https://doi.org/10.1090/S0002-9947-1971-0278287-4
- MathSciNet review: 0278287