Cubes with knotted holes
Authors:
R. H. Bing and J. M. Martin
Journal:
Trans. Amer. Math. Soc. 155 (1971), 217-231
MSC:
Primary 55.20; Secondary 54.00
DOI:
https://doi.org/10.1090/S0002-9947-1971-0278287-4
MathSciNet review:
0278287
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The statement that a knot has Property
means that (1) if
is a cube with a
- [1] J. W. Alexander and G. B. Briggs, On types of knotted curves, Ann. of Math. (2) 28 (1926/27), no. 1-4, 562–586. MR 1502807, https://doi.org/10.2307/1968399
- [2] R. H. Bing, Necessary and sufficient conditions that a 3-manifold be 𝑆³, Ann. of Math. (2) 68 (1958), 17–37. MR 95471, https://doi.org/10.2307/1970041
- [3] R. H. Bing, Correction to “Necessary and sufficient conditions that a 3-manifold be 𝑆³”, Ann. of Math. (2) 77 (1963), 210. MR 142115, https://doi.org/10.2307/1970205
- [4]
-, Some aspects of the topology of
-manifolds related to the Poincaré conjecture, Lectures on Modern Math., vol. 2, Wiley, New York, 1964, pp. 93-128. MR 30 #2474.
- [5] -, Computing the fundamental group of the complement of curves, Washington State University, Pullman, Wash., 1965.
- [6] Garrett Birkhoff and Saunders Mac Lane, A survey of modern algebra, Third edition, The Macmillan Co., New York; Collier-Macmillan Ltd., London, 1965. MR 0177992
- [7] A. C. Conner, Splittable knots (preprint).
- [8] H. S. M. Coxeter, The abstract groups 𝐺^{𝑚,𝑛,𝑝}, Trans. Amer. Math. Soc. 45 (1939), no. 1, 73–150. MR 1501984, https://doi.org/10.1090/S0002-9947-1939-1501984-9
- [9] H. S. M. Coxeter, The abstract group 𝐺^{3,7,16}, Proc. Edinburgh Math. Soc. (2) 13 (1962), 47–61. MR 142621, https://doi.org/10.1017/S0013091500014486
- [10] R. H. Fox, A quick trip through knot theory, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 120–167. MR 0140099
- [11] H. Gluck, Ph.D. Thesis, Princeton University, Princeton, N. J., 1961.
- [12] John Hempel, Construction of orientable 3-manifolds, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 207–212. MR 0140115
- [13] John Hempel, A simply connected 3-manifold is 𝑆³ if it is the sum of a solid torus and the complement of a torus knot, Proc. Amer. Math. Soc. 15 (1964), 154–158. MR 157365, https://doi.org/10.1090/S0002-9939-1964-0157365-6
- [14] W. B. R. Lickorish, A representation of orientable combinatorial 3-manifolds, Ann. of Math. (2) 76 (1962), 531–540. MR 151948, https://doi.org/10.2307/1970373
- [15] Lee Neuwirth, The algebraic determination of the genus of knots, Amer. J. Math. 82 (1960), 791–798. MR 120648, https://doi.org/10.2307/2372940
- [16] Dieter Noga, Über den Aussenraum von Produktknoten und die Bedeutung der Fixgruppen, Math. Z. 101 (1967), 131–141 (German). MR 219054, https://doi.org/10.1007/BF01136030
- [17] C. D. Papakyriakopoulos, On solid tori, Proc. London Math. Soc. (3) 7 (1957), 281–299. MR 0087944, https://doi.org/10.1112/plms/s3-7.1.281
- [18] C. D. Papakyriakopoulos, On Dehn’s lemma and the asphericity of knots, Ann. of Math. (2) 66 (1957), 1–26. MR 90053, https://doi.org/10.2307/1970113
- [19] H. Poincaré, Second complément a l'analysis situs, Proc. London Math. Soc. (2) 32 (1900), 277-308.
- [20] -, Cinquieme complément a l'analysis situs, Rend. Circ. Mat. Palermo 18 (1904), 45-110.
- [21] H. F. Trotter, Non-invertible knots exist, Topology 2 (1963), 275–280. MR 158395, https://doi.org/10.1016/0040-9383(63)90011-9
- [22] Andrew H. Wallace, Modifications and cobounding manifolds, Canadian J. Math. 12 (1960), 503–528. MR 125588, https://doi.org/10.4153/CJM-1960-045-7
- [23] J. H. C. Whitehead, On doubled knots, J. London Math. Soc. 12 (1937), 63-71.
Retrieve articles in Transactions of the American Mathematical Society with MSC: 55.20, 54.00
Retrieve articles in all journals with MSC: 55.20, 54.00
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1971-0278287-4
Keywords:
Knots,
cubes with knotted holes,
Poincaré conjecture,
-manifolds,
Property
Article copyright:
© Copyright 1971
American Mathematical Society