Partitions with a restriction on the multiplicity of the summands
HTML articles powered by AMS MathViewer
- by Peter Hagis
- Trans. Amer. Math. Soc. 155 (1971), 375-384
- DOI: https://doi.org/10.1090/S0002-9947-1971-0272735-1
- PDF | Request permission
Abstract:
Using the circle dissection method, a convergent series and several asymptotic formulae are obtained for $p(n,t)$, the number of partitions of the positive integer $n$ in which no part may be repeated more than $t$ times.References
- J. W. L. Glaisher, A theorem in partitions, Messenger Math. 12 (1883), 158-170.
- Peter Hagis Jr., A problem on partitions with a prime modulus $p\geq 3$, Trans. Amer. Math. Soc. 102 (1962), 30–62. MR 146166, DOI 10.1090/S0002-9947-1962-0146166-3
- Peter Hagis Jr., Partitions into odd summands, Amer. J. Math. 85 (1963), 213–222. MR 153651, DOI 10.2307/2373210
- Peter Hagis Jr., A root of unity occurring in partition theory, Proc. Amer. Math. Soc. 26 (1970), 579–582. MR 265308, DOI 10.1090/S0002-9939-1970-0265308-2 G. H. Hardy and S. Ramanujan, Asymptotic formulae in combinatorial analysis, Proc. London Math. Soc. (2) 17 (1918), 75-115.
- Loo-keng Hua, On the number of partitions of a number into unequal parts, Trans. Amer. Math. Soc. 51 (1942), 194–201. MR 6195, DOI 10.1090/S0002-9947-1942-0006195-4
- Shô Iseki, A partition function with some congruence condition, Amer. J. Math. 81 (1959), 939–961. MR 108473, DOI 10.2307/2372997
- Joseph Lehner, A partition function connected with the modulus five, Duke Math. J. 8 (1941), 631–655. MR 5523
- Ivan Niven and Herbert S. Zuckerman, An introduction to the theory of numbers, 2nd ed., John Wiley & Sons, Inc., New York-London-Sydney, 1966. MR 0195783 H. Rademacher, Zur Theorie der Modulfunktionen, J. Reine Angew. Math. 167 (1931), 312-336.
- Hans Rademacher, The Fourier Coefficients of the Modular Invariant J($\tau$), Amer. J. Math. 60 (1938), no. 2, 501–512. MR 1507331, DOI 10.2307/2371313
- Hans Salié, Zur Abschätzung der Fourierkoeffizienten ganzer Modulformen, Math. Z. 36 (1933), no. 1, 263–278 (German). MR 1545344, DOI 10.1007/BF01188622
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 155 (1971), 375-384
- MSC: Primary 10.48
- DOI: https://doi.org/10.1090/S0002-9947-1971-0272735-1
- MathSciNet review: 0272735