## Bifunctors and adjoint pairs

HTML articles powered by AMS MathViewer

- by J. Fisher Palmquist and David C. Newell PDF
- Trans. Amer. Math. Soc.
**155**(1971), 293-303 Request permission

## Abstract:

We use a definition of tensor products of functors to generalize some theorems of homological algebra. We show that adjoint pairs of functors between additive functor categories correspond to bifunctors and that composition of such adjoint pairs corresponds to the tensor product of the bifunctors. We also generalize some homological characterizations of finitely generated projective modules to characterizations of small projectives in a functor category. We apply our results to adjoint pairs arising from satellites and from a functor on the domain categories.## References

- M. André,
*Categories of functors and adjoint functors*, Amer. J. Math.**88**(1966), 529–543. MR**197528**, DOI 10.2307/2373139 - David A. Buchsbaum,
*Satellites and universal functors*, Ann. of Math. (2)**71**(1960), 199–209. MR**112905**, DOI 10.2307/1970081 - Samuel Eilenberg,
*Abstract description of some basic functors*, J. Indian Math. Soc. (N.S.)**24**(1960), 231–234 (1961). MR**125148** - Janet L. Fisher,
*The tensor product of functors; satellites; and derived functors*, J. Algebra**8**(1968), 277–294. MR**237593**, DOI 10.1016/0021-8693(68)90060-4 - Daniel M. Kan,
*Adjoint functors*, Trans. Amer. Math. Soc.**87**(1958), 294–329. MR**131451**, DOI 10.1090/S0002-9947-1958-0131451-0 - Charles E. Watts,
*Intrinsic characterizations of some additive functors*, Proc. Amer. Math. Soc.**11**(1960), 5–8. MR**118757**, DOI 10.1090/S0002-9939-1960-0118757-0 - Nobuo Yoneda,
*On Ext and exact sequences*, J. Fac. Sci. Univ. Tokyo Sect. I**8**(1960), 507–576 (1960). MR**225854**

## Additional Information

- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**155**(1971), 293-303 - MSC: Primary 18.10
- DOI: https://doi.org/10.1090/S0002-9947-1971-0274553-7
- MathSciNet review: 0274553