Nonlinear evolution equations and product stable operators on Banach spaces
HTML articles powered by AMS MathViewer
- by G. F. Webb
- Trans. Amer. Math. Soc. 155 (1971), 409-426
- DOI: https://doi.org/10.1090/S0002-9947-1971-0276842-9
- PDF | Request permission
Abstract:
The method of product integration is used to obtain solutions to the time dependent Banach space differential equation $u’(t) = A(t)(u(t)),t \geqq 0$, where $A$ is a function from $[0,\infty )$ to the set of nonlinear operators from the Banach space $X$ to itself and $u$ is a function from $[0,\infty )$ to $X$. The main requirements placed on $A$ are that $A$ is $m$-dissipative and product stable on its domain. Applications are given to a linear partial differential equation, to nonlinear dissipative operators in Hilbert space, and to continuous, $m$-dissipative, everywhere defined operators in Banach spaces.References
- Felix E. Browder, Non-linear equations of evolution, Ann. of Math. (2) 80 (1964), 485–523. MR 173960, DOI 10.2307/1970660
- H. Brezis, M. G. Crandall, and A. Pazy, Perturbations of nonlinear maximal monotone sets in Banach space, Comm. Pure Appl. Math. 23 (1970), 123–144. MR 257805, DOI 10.1002/cpa.3160230107 H. Brezis and A. Pazy, Accretive sets and differential equations in Banach spaces (to appear).
- M. G. Crandall and T. M. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math. 93 (1971), 265–298. MR 287357, DOI 10.2307/2373376
- Michael G. Crandall and Amnon Pazy, Semi-groups of nonlinear contractions and dissipative sets, J. Functional Analysis 3 (1969), 376–418. MR 0243383, DOI 10.1016/0022-1236(69)90032-9
- J. R. Dorroh, A nonlinear Hille-Yosida-Phillips theorem, J. Functional Analysis 3 (1969), 345–353. MR 0240673, DOI 10.1016/0022-1236(69)90030-5
- J. R. Dorroh, A class of nonlinear evolution equations in a Banach space, Trans. Amer. Math. Soc. 147 (1970), 65–74. MR 253085, DOI 10.1090/S0002-9947-1970-0253085-5
- Jerome A. Goldstein, Abstract evolution equations, Trans. Amer. Math. Soc. 141 (1969), 159–185. MR 247524, DOI 10.1090/S0002-9947-1969-0247524-5
- Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, Vol. 31, American Mathematical Society, Providence, R.I., 1957. rev. ed. MR 0089373
- Tosio Kato, Integration of the equation of evolution in a Banach space, J. Math. Soc. Japan 5 (1953), 208–234. MR 58861, DOI 10.2969/jmsj/00520208
- Tosio Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19 (1967), 508–520. MR 226230, DOI 10.2969/jmsj/01940508
- Yukio K\B{o}mura, Nonlinear semi-groups in Hilbert space, J. Math. Soc. Japan 19 (1967), 493–507. MR 216342, DOI 10.2969/jmsj/01940493 R. H. Martin, A global existence theorem for autonomous differential equation in a Banach space (to appear). J. Mermin, Accretive operators and nonlinear semi-groups, Thesis, University of California, Berkeley, Calif., 1968.
- J. W. Neuberger, Product integral formulae for nonlinear expansive semigroups and non-expansive evolution systems, J. Math. Mech. 19 (1969/1970), 403–409. MR 0253086, DOI 10.1512/iumj.1970.19.19037
- Isao Miyadera and Shinnosuke Ôharu, Approximation of semi-groups of nonlinear operators, Tohoku Math. J. (2) 22 (1970), 24–47. MR 262874, DOI 10.2748/tmj/1178242858
- C. V. Pao and William G. Vogt, On the stability of nonlinear operator differential equations, and applications, Arch. Rational Mech. Anal. 35 (1969), 30–46. MR 245951, DOI 10.1007/BF00248493
- G. F. Webb, Nonlinear evolution equations and product integration in Banach spaces, Trans. Amer. Math. Soc. 148 (1970), 273–282. MR 265992, DOI 10.1090/S0002-9947-1970-0265992-8
- G. F. Webb, Product integral representation of time dependent nonlinear evolution equations in Banach spaces, Pacific J. Math. 32 (1970), 269–281. MR 257834
- Kôsaku Yosida, Functional analysis, Die Grundlehren der mathematischen Wissenschaften, Band 123, Academic Press, Inc., New York; Springer-Verlag, Berlin, 1965. MR 0180824
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 155 (1971), 409-426
- MSC: Primary 47.80
- DOI: https://doi.org/10.1090/S0002-9947-1971-0276842-9
- MathSciNet review: 0276842