Some transplantation theorems for the generalized Mehler transform and related asymptotic expansions
HTML articles powered by AMS MathViewer
- by Susan Schindler
- Trans. Amer. Math. Soc. 155 (1971), 257-291
- DOI: https://doi.org/10.1090/S0002-9947-1971-0279528-X
- PDF | Request permission
Abstract:
Let $P_{ - 1/2 + ix}^m(z)$ be the associated Legendre function of order $m$ and degree $- 1/2 + ix$. We give, here, two integral transforms ${G^m}$ and ${H^m}$, arising naturally from the generalized Mehler transform, which is induced by $P_{ - 1/2 + ix}^m(\cosh y)$, such thatb ${H^m}{G^m}$ = Identity (formally). We show that if $1 < p < \infty , - 1/p < \alpha < 1 - 1/p,m \leqq 1/2$ or $m = 1,2, \ldots ,$ then $||{G^m}f|{|_{p,\alpha }} \leqq A_{p,\alpha }^m||\hat f|{|_{p,\alpha }}$ and $||{H^m}f|{|_{p,\alpha }} \leqq A_{p,\alpha }^m||\hat f|{|_{p,\alpha }}$, where $^ \wedge$ denotes the Fourier cosine transform. We also prove that ${G^m}f,{H^m}f$ exist as limits in ${L^{p,\alpha }}$ of partial integrals, and we prove inequalities equivalent to the above pair: $||{G^m}\hat f|{|_{p,\alpha }} \leqq A_{p,\alpha }^m||f|{|_{p,\alpha }}$ and $||{H^m}\hat f|{|_{p,\alpha }} \leqq A_{p,\alpha }^m||f|{|_{p,\alpha }}$. These we dualize to $||{({H^m}f)^ \wedge }|{|_{p,\alpha }} \leqq A_{p,\alpha }^m||f|{|_{p,\alpha }}$, and $||{({G^m}f)^ \wedge }|{|_{p,\alpha }} \leqq A_{p,\alpha }^m||f|{|_{p,\alpha }}$. ${G^m}$ and ${H^m}$ are given by ${G^m}(f;y) = \int _0^\infty {f(x){K^m}(x,y)dx}$ and ${H^m}(f;x) = \int _0^\infty {f(y){K^m}(x,y)dy\;} (0 \leqq y < \infty )$, where \[ {K^m}(x,y) = |\Gamma (1/2 - m - ix)/\Gamma ( - ix)/{(\sinh y)^{1/2}}P_{ - 1/2 + ix}^m(\cosh y).\] The principal method of proving the inequalities involves getting asymptotic expansions for ${K^m}(x,y)$; these are in terms of sines and cosines for large $y$, and in terms of Bessel functions for $y$ small. Then we can use Fourier and Hankel multiplier theorems. The main consequences of our results are the typical ones for transplantation theorems: mean convergence and multiplier theorems. They can easily be restated in terms of the more usual Mehler transform pair \[ g(y) = \int _0^\infty {f(x){P_{ - 1/2 + ix}}(y)dx} \] and $f(x) = {\pi ^{ - 1}}x\sinh \pi x \cdot \Gamma (1/2 - m + ix)\Gamma (1/2 - m - ix)\int _0^\infty {g(y){P_{ - 1/2 + ix}}(y)dy.}$References
- Richard Askey, A transplantation theorem for Jacobi coefficients, Pacific J. Math. 21 (1967), 393–404. MR 217509
- Richard Askey and Stephen Wainger, A transplantation theorem for ultraspherical coefficients, Pacific J. Math. 16 (1966), 393–405. MR 217508
- Richard Askey and Stephen Wainger, A transplantation theorem between ultraspherical series, Illinois J. Math. 10 (1966), 322–344. MR 211187
- Ralph P. Boas Jr., Integrability theorems for trigonometric transforms, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 38, Springer-Verlag New York, Inc., New York, 1967. MR 0219973 A. Erdélyi et al., Higher transcendental functions. Vol. I, McGraw-Hill, New York, 1953. MR 15, 419. —, Higher transcendental functions. Vol. II, McGraw-Hill, New York, 1953. MR 15, 419.
- V. A. Fock, On the representation of an arbitrary function by an integral involving Legendre’s functions with a complex index, C. R. (Doklady) Acad. Sci. URSS (N.S.) 39 (1943), 253–256. MR 0009665
- Ramesh Gangolli, Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy’s Brownian motion of several parameters, Ann. Inst. H. Poincaré Sect. B (N.S.) 3 (1967), 121–226. MR 0215331
- R. K. Getoor, Infinitely divisible probabilities on the hyperbolic plane, Pacific J. Math. 11 (1961), 1287–1308. MR 133858
- Douglas L. Guy, Hankel multiplier transformations and weighted $p$-norms, Trans. Amer. Math. Soc. 95 (1960), 137–189. MR 120506, DOI 10.1090/S0002-9947-1960-0120506-1
- G. H. Hardy and J. E. Littlewood, Some more theorems concerning Fourier series and Fourier power series, Duke Math. J. 2 (1936), no. 2, 354–382. MR 1545928, DOI 10.1215/S0012-7094-36-00228-4
- I. I. Hirschman Jr., Projections associated with Jacobi polynomials, Proc. Amer. Math. Soc. 8 (1957), 286–290. MR 85359, DOI 10.1090/S0002-9939-1957-0085359-4
- J. S. Lowndes, Note on the generalized Mehler transform, Proc. Cambridge Philos. Soc. 60 (1964), 57–59. MR 158227
- A. McD. Mercer, On integral transform pairs arising from second-order differential equations, Proc. Edinburgh Math. Soc. (2) 13 (1962), 63–68. MR 141955, DOI 10.1017/S0013091500014498 F. Oberhettinger and T. P. Higgins, Tables of Lebedev, Mehler and generalized Mehler transforms, Mathematical Note No. 246, Boeing Scientific Research Laboratories, Seattle, Wash., 1961.
- Harry Pollard, The mean convergence of orthogonal series. I, Trans. Amer. Math. Soc. 62 (1947), 387–403. MR 22932, DOI 10.1090/S0002-9947-1947-0022932-1
- Marcel Riesz, Sur les fonctions conjuguées, Math. Z. 27 (1928), no. 1, 218–244 (French). MR 1544909, DOI 10.1007/BF01171098 L. Robin, Fonctions sphériques de Legendre et fonctions sphéroldales. Vol. 1, 2, 3. Gauthier-Villars, Paris, 1957, 1958, 1959. MR 19, 954; MR 21 #734; MR 22 #779. P. L. Rosenthal, On a generalization of Mehler’s inversion formula and some of its applications, Dissertation, Oregon State Univ., Corvallis, 1961. G. Szegö, Über einige asymptotische Entwicklungen der Legendreschen Functionen, Proc. London Math. Soc. (2) 36 (1932), 427-450. —, Asymptotische Entwicklungen der Jacobischen Polynome, Sehr. König. Gel. Gesell. Naturwiss. Kl. 10 (1933), 35-112.
- G. M. Wing, On the $L^p$ theory of Hankel transforms, Pacific J. Math. 1 (1951), 313–319. MR 43934 M. I. Žurina and L. N. Karmazina, Tables and formulae for the spherical functions $P_{ - 1/2 + ix}^m(z)$, Vyčisl. Centr. Akad. Nauk SSSR, Moscow, 1962; English transl., Pergamon Press, New York, 1966. MR 26 #3935; MR 34 #2950.
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 155 (1971), 257-291
- MSC: Primary 42.26; Secondary 44.00
- DOI: https://doi.org/10.1090/S0002-9947-1971-0279528-X
- MathSciNet review: 0279528