A construction of Lie algebras from a class of ternary algebras
HTML articles powered by AMS MathViewer
- by John R. Faulkner
- Trans. Amer. Math. Soc. 155 (1971), 397-408
- DOI: https://doi.org/10.1090/S0002-9947-1971-0294424-X
- PDF | Request permission
Abstract:
A class of algebras with a ternary composition and alternating bilinear form is defined. The construction of a Lie algebra from a member of this class is given, and the Lie algebra is shown to be simple if the form is nondegenerate. A characterization of the Lie algebras so constructed in terms of their structure as modules for the three-dimensional simple Lie algebra is obtained in the case the base ring contains 1/2. Finally, some of the Lie algebras are identified; in particular, Lie algebras of type ${E_8}$ are obtained.References
- Robert B. Brown, Groups of type $E_{7}$, J. Reine Angew. Math. 236 (1969), 79–102. MR 248185, DOI 10.1515/crll.1969.236.79
- Hans Freudenthal, Beziehungen der $\mathfrak {E}_7$ und $\mathfrak {E}_8$ zur Oktavenebene. II, Nederl. Akad. Wetensch. Proc. Ser. A 57 (1954), 363–368 = Indag. Math. 16, 363–368 (1954) (German). MR 0068549
- Nathan Jacobson, Structure and representations of Jordan algebras, American Mathematical Society Colloquium Publications, Vol. XXXIX, American Mathematical Society, Providence, R.I., 1968. MR 0251099
- Max Koecher, Imbedding of Jordan algebras into Lie algebras. I, Amer. J. Math. 89 (1967), 787–816. MR 214631, DOI 10.2307/2373242
- Kevin McCrimmon, The Freudenthal-Springer-Tits constructions of exceptional Jordan algebras, Trans. Amer. Math. Soc. 139 (1969), 495–510. MR 238916, DOI 10.1090/S0002-9947-1969-0238916-9 G. B. Seligman, On the split exceptional Lie algebra ${E_7}$, Yale University, New Haven, Conn. (mimeographed notes).
- J. Tits, Une classe d’algèbres de Lie en relation avec les algèbres de Jordan, Nederl. Akad. Wetensch. Proc. Ser. A 65 = Indag. Math. 24 (1962), 530–535 (French). MR 0146231
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 155 (1971), 397-408
- MSC: Primary 17B05
- DOI: https://doi.org/10.1090/S0002-9947-1971-0294424-X
- MathSciNet review: 0294424