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A CONSTRUCTION OF LIE ALGEBRAS
FROM A CLASS OF TERNARY ALGEBRAS

BY
JOHN R. FAULKNER

Abstract. A class of algebras with a ternary composition and alternating bilinear
form is defined. The construction of a Lie algebra from a member of this class is
given, and the Lie algebra is shown to be simple if the form is nondegenerate. A
characterization of the Lie algebras so constructed in terms of their structure as
modules for the three-dimensional simple Lie algebra is obtained in the case the base
ring contains 1/2. Finally, some of the Lie algebras are identified; in particular, Lie
algebras of type Ejg are obtained.

A construction of Lie algebras from Jordan algebras discovered independently
by J. Tits [7] and M. Koecher [4] has been useful in the study of both kinds of
algebras. In this paper, we give a similar construction of Lie algebras from a
ternary algebra with a skew bilinear form satisfying certain axioms. These ternary
algebras are a variation on the Freudenthal triple systems considered in [1]. Most
of the results we obtain for our construction are parallel to those for the Tits-
Koecher construction (see [3, Chapter VIII]).

In §1, we define the ternary algebras, derive some basic results about them, and
give two examples of such algebras. In §2, the Lie algebras are constructed and
shown to be simple if and only if the skew bilinear form is nondegenerate. In §3,
we give a characterization, in the case the base ring contains 1/2, of the Lie algebras
obtained by our construction in terms of their structure as modules for the three-
dimensional simple Lie algebra. Finally, in §4, we identify some of the simple Lie
algebras obtained by our construction from the examples of §1. In particular, we
show that we can construct a Lie algebra of type Eg from a 56-dimensional space
which is a module for a Lie algebra of type E;. A similar construction was given
by H. Freudenthal in [2].

1. A class of ternary algebras. We shall be interested in a module M over an
arbitrary commutative associative ring ® with 1 which possesses an alternating
bilinear form ¢ , ) and a ternary product { , , > which satisfy

(TD <x, y, 2> =<y, x, z)+<{x, y>z for x, y, ze M;

(T2) {x,p,2>=Xx,2,¥y>+{y, z)x for x, y,ze M,

(T3) Kx,p, 20, wp={x, ¥, W), 2> +{x, y){z, w) for x, y, z, w e M;
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398 J. R. FAULKNER [April

(T4) x, p, 20, v, wy=x, v, W), p, 2)+<x, (¥, v, W), D +Lx, y, <z, W, VD)
for x, y,z,v, we M.
We can define a four-linear form ¢ on M by
(1.1) q(x, y,z, w) = K<x,y, 2>, wy forx,y,z,weM.
Axioms (T1)~(T3) then yield
q(x, y, 2, w) = q(p, x, z, w)+<x, y Xz, w)
1.2) = 4(x, z, y, W) +<y, )<x, W)
= q(x,y, w, 2)+<{x, y><z, w) for x,y,z, we M.
An easy consequence of (1.2) is
(1.3) q(X175 Xans Xans Xaz) = q(X1, X, X3, X4) for x; € M and 7 € K,
where X is the permutation group {1, (12)(34), (13)(24), (14)(23)}.
By (T4), we have
KXy X3y X3), X5, X6Ds Xo)
= (X1, X5, X6 X2, X3D, Xg +<{{X1, {Xa, X5, X&) X305 Xa)
+ {1, X3, X3, Xa, X5pp, Xgp for x; € M.
Using (T2), we see
—LLX1, X3y X3Ds X6, X505 Xap +<LX1, Xs55 X6)s X2, X3, X4
+ <Xy, {Xa, X5, X6 X3), Xa) +<{X1, X2, {X3, X5, X6)D> Xa)
= 2(Xs, Xe7q(X1, X3, X3, Xs)-

Using (1.3) this last identity can be rewritten as
(1.4) Z X1, Xg, X3), X4y X5, Xg))™ = 2{Xs5, Xe)q(X1, X3, X3, X4) for x; € M,
nekK

where K is considered to be a subgroup of the symmetric group Ss and the super-
script = means = is applied to each subscript i of the x;’s.

If ¢, > is nondegenerate and ® is a field, then (1.1) and (1.2) imply (T1)«(T3)
and the argument used to establish (1.4) can be reversed to obtain (T4). Thus, we
have shown

LeMMA 1. If a vector space M over a field ® possesses a nondegenerate alternating
form { , > and four-linear form q( , , ,) satisfying (1.2) and if { , , > defined by
(1.1) satisfies (1.4), then{ , > and { , , ) satisfy (T1)(T4).

We shall now give two examples of M, < , > and < , , ) satisfying (T1)«(T4).

ExampLE 1. If @ is a commutative associative ring with 1 containing 1 with
3+3=1 and M is a ®-module with an alternating bilinear form < , >, then { , >
and {,, > defined by {x,y, z)=3Kx, y>z+{y, 2Dx+<{x, z)y), x,y,z€M,
satisfy (T1)~(T4).

The verification of Example 1 is straightforward, and we omit it. A more com-
plicated and more interesting example is
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1971] A CONSTRUCTION OF LIE ALGEBRAS 399

EXAMPLE 2. Let J=3(&, 1) be a quadratic Jordan algebra with 1 over a field ®
constructed as in [5] from an admissible nondegenerate cubic form N with base-
point 1. Recall yU,=T(x, y)x—x# xy where T( , ) and x — x# are respectively
the associated nondegenerate bilinear form and quadratic mapping and xxy
=(x+yyf—xt—y* x,ye . Let

m ={(: ;)|a,ﬁed);x,y63}.

For
o a;
Xy = e M,
! (bi B‘)
we define
(1.5) (X1, Xg) = ayfa—agfy—T(ay, by)+ T(aza by),
c

(1'6) <x1, Xg, x3> = (; 8)
where

v = a1Baag+ 20983 — a5T(ay, by) — 43 T(ay, bs) — 1 T(as, bs) +T(ay, az x as),
¢ = (gfa+T(bs;, a5))a, + (B3 +T(by, as))az + (e1fz+T(b1, az))as
—ayby X by — aghy X by—agh; X by —{a1b.as} —{a,bsa:} —{azb,as},
8= —y°, d = —c°, where o = (oB)(ab).
(Note 97 is the term obtained from y by interchanging « and B as well as a and b.)
If we define g( , , , ) by (1.1), we shall show that the conditions of Lemma 1 are
satisfied. Actually we shall show (T1)«(T3) and (1.4), which is clearly sufficient
since T( , ) nondegenerate implies < , ) is also.
We see y —y12 ={x,, x,)az since T(a,, a, X a;) is symmetric in all three variables.

Also, c— 12 ={x1, xz)a3. Since {x;, xo>7 = —{xy, Xg), We see § — 812 ={x;, x2>Ps,
d—d®® ={x,, x5)b3, and (T1) holds. A similar argument establishes (T2).

To show (T3), we shall show g(x;, xa, X3, X4)=q(x, X1, X4, X3), Which with (T1)
yields (T3). We note

q(x1, X, X, X4) = YBs+y°as—T(c, by) —T(c’, as)= [yBs—T(c, by)|**+?
= [(@1B20:9Bs) + (201 25B5B4) — (¢aBs T(a1, b2))
—(22B4T(ay, bs) + 13T (az, bs)) —(1BsT(as, bs) +aafsT(ay, bs))
+(BaT(ay, az x as) + a3 T(by x by, by)) —(T(as, bo)T(ay, b,))
—(T(as, b1)T(as, b)) —(1P2T(as, bs))—(T(az, by)T(as, bs))
+ (@1 T(b2 % bg, by) + a3 T(by x b, by))+(T({arb.as}, bs))
+(T({a1bsas}, b)) +(T({azhias}, b)) * 7

= q(Xa, X1, X4, X3)
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400 J. R. FAULKNER [April

as desired since each term in parenthesis above is invariant up to o by (12)(34).
Here we have used T(a, b x c) is symmetric, and

T({abc}, d) = T(c, {bad}) = T(b, {adc})

which hold in .
We shall now give a verification of (1.4). Letting

yl cl
<X4, X5, x6> = (dp 81)’
we see that

L%, X3, X390, X4, X5, Xe)) = y8' —y'8—T(c, d)+T(c', d)= [y’y' —T(c ¢')]*~?
= [y’ay(Bses + 20586 — T(as, b))+ T(y°as, —asbg —cebs+as x ag)
—T(c° x by, —asbg—0ghs+as x ag) — T(esc’, Pets + Psas — bs X bg)

—T(c? as)(esPs+ T(bs, ae)) — T(c?, —a,L)]*~?
where uL={ubsas}+{ubsas} so T(uL,v)=T(u, vL°). Here we have used {asb.ac}
=T(by, as)ag+ T (b,, ag)as —(as x ag) x b, and the symmetry of T(a, b x c).

We note that
T(o4c, Poas+Psag —bs x be) = = T(Bsc, —aghs — asbe +as x ag)* =
and
2, (Fai—c?xby—Picy’
- = z (T(by, by x bg)as+T(by, az)bs x by—(az % (by X bs)) x b,
” +T(as, bo)by +by—(as x (by x by)) X by +T(ay, bs)by x by
—(ay X (by x b)) x by)"
= z (T(by1, by x ba)as+T(bs, as)by X by—(as x (bs X b1)) x by
" T(@y, bby x by — (@ x (b X b)) X by+ T(@s, bo)bs x by
—(ayx (bsx bg)) x by)* = 0

by the linearization of N(b)a+ T(a, b)b*=(a x b¥) x b which holds in .
Also, T(by, a, L)’ =T(a;L, b)) =T(b;, a,L)*?, so

[(Baos + T(az, b3))T(b1, a L)) = [(Baes+T(az, ba))T (b1, a4L)](14)(23)~
Moreover,

T({b,azbs}, a, L)’ = T({a1beas}L, b,)
= T({a,Lbsas}, b,)—T({a,b;L°as}, by)+ T({a,bsasL}, by),
SO
[T({brazbs}, a, L)'+ — T({b,ahs}, a L) 9@ +1230,
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These and similar expressions yield

z T(c®, a,Ly"*-
nek
= - z (BiT(az x as, a,L)+ B, T(az X ay, asL)+B1T(ag x aq, a;L)y** =7

neK

= — 2(T(b5, ae) + T(bs, (15)) z .Bl(T(az, ag X 04))”(1 -0

The last equality follows from the linearization of T(w#, {uab})=2T(a, b)N(u)
which holds in .
Finally, we note that > ,.x (y’as— T(by, by X bs)e,)™ and

Z (T(c?, as) +B1T(az x as, as) +BaT(a, % as, as) +BsT(a;, X as, a,))*

nek

are invariant under o and their difference is

2(y°as—T(c°, as)—P1T(az X as, as) —BoT(ay +as, as)

—BsT(a; X as, ay) —BaT(ay, az x az))*+.
Hence

z X1, Xz, X3, (X4, X5, Xg))"

nekK
= > (¥ ay—T(by, by x b)a)xs, xe»

neK

+ Z (T(by, by x bg)g(Bsrs + 20586 — T(as, be)))™* =

nek

- Z (T(c, as) +B1T(az x as, as) +B2T(ar X as, as) +PsT(ay X az, as))*(xs, Xe»

nekK

+ Z (3B, T(az x as, a;)(esBs + T(bs, ag)))™*

nekK

- Z (28,T(a; % as, a.)(T(bs, as) + T(be, as)))™* =~

nek

= 2(y%as —T(c%, as))** x5, Xg)
= 2q(x1, Xg, X3, X4){X5, Xg)
establishing (1.4).

2. Construction of the Lie algebras. Starting with a module 9 over a com-
mutative associative ring ® with 1 which possesses an alternating bilinear form
{, > and a ternary product { , , > which satisfy (T1)«T4), we shall construct
some Lie algebras.

First, we construct =M @ du and the associative subalgebra A(M) of
Homg (N, N) consisting of 4 € Homg (N, N) such that ud € ®u and MA=I.
We let A(I%)~ denote the Lie algebra structure on A(M) where [4B]=AB—BA.
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402 J. R. FAULKNER [April

If we define U € A(IM)~ by uU=2u and xU=x for x € M, then it is clear that U
is in the center of A(IM)~. We may also define p(4) € ® for 4 € A(M)~ by

2.1 uAd = p(A)u.
If A eA(M)~, we set
(2.2) A = A—p(A)U

and note that [AB]' =[4B]=[A'B’] for A, Be (M), so A— A’ is an auto-
morphism of A(M)~ of order two.
We next define R(x, y) € A(M)~ for x, y € M by

(2.3) uR(x, y) = {x, y>u,
ZR(x’y) = <Z,x,y> for ze M.

Let R*(9M) consist of those R € A(M)~ such that
2.9 [R(x, »)R] = R(xR, y)+ R(x, yR') for x,ye M.

One checks immediately that R*(3M) is a Lie subalgebra of A(M)~ containing U
and hence invariant under 4 — 4 .
It is clear from (T1) that

(2'5) R(x, y)--R(y’ X) = <xa J’>U, X, Y€ %a
and hence R'(x, y)=R(y, x). Since q(xy, X3, X4, X3) =q(X3, X4, X3, X1) by (1.3), we
see by (T4) that

[R(x1, X2)R(x3, X4)] = R(x1R(x3, X4), X3) + R(x1, X2R(X4, X3))

(2.6)
forx;eM,i=1,2,3,4.

Hence, R(x, y) € R*(M) for x, y € M. Indeed {R(x, y) | x, y € M} U {U} spans an
ideal R(M) of R*(M). We note that if ( , > represents 1, then (2.5) implies that
R(M) is spanned by {R(x, y) | x, y € M}.

Applying (2.4) to u we get

2.7 (xR, y>+<{x,yR’> = 0 for x,y € M, Re R*(M).
Now let R’ be any Lie subalgebra of R*(3) containing R(M) and let N denote
a second copy of R. Form G(M, R)=RONR PR =M OM P du D Pa D R
We may define a Lie product on @=&(M, R’) by
[x1 4 §1+oqu+Bifi+ Ry, xo+ Ja+ aqu+Paut+ Ry )
= (¥1Ry—XaR;y + a3 Yo — Y1) + (¥1 Rz — Yo Ry +Boxy — B1x2) ™
+({x1, X2 + 1 p(Ra) — ap(Ry))u
+ (1 Y2 —B1p(Rs) +Bap(Ry))iE

+(R(x1, y3) — R(x3, y1) + (B2 —2af1) U+ [Ry, R;)])
fOI' Xi, i € ms Oy Bi € (Da Ri € ER"

(2.8)
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1971] A CONSTRUCTION OF LIE ALGEBRAS 403

where [R;R,] is the Lie product in R’. Clearly [SS]=0 for S € &, and we need
only show the Jacobi identity.
If Si=x;+ji+ou+Bfi+ Ry, x, €M, oy, B € ®, Rie R, i=1, 2, 3, then
[[S152]85] = {(*1R2R3— x3R; R3— x3[ Ry R;])
+ (21 2 Rs — aap(R1)ys — 31 R3) +(— a2 y1 Ry + a1 p(R5)ys + s y2 RY)
+(—<xaX1 Y2 +<{XaX2¥1) +<X1, X2)Vs)
+(— 01 Baxg + g1 X5) + (a1 X5 — cafax1)}
+{(»1R3R3—y2RiR3 — ys[R1 R;]')
+(BaX1R3 + B1p(Rz)x3 — BaXa Ry) +(—P1xaRs — Bap(Ry) X5+ Bax1 R5)
+(ysy1x2> —<{YayaX1) — <Y1, Y2>Xa)
+(1B2Ys —@oBay1) +(— a1 ya+a1Baya)}”
+{({x1 Rz, X539 — X3 Ry, X3) +<X1, X2)p(R3))
+ (21 Y2, X35> — g Y1, X20) +(eaya, X1> — 02 y1, X3))
+ (21 p(R3)p(R3) — c2p(Ry)p(R3)) + (205 — 250, )}
+{({1R2, 39 — < Y2R1, 3D — < ¥1, Y20 P(Rs))
+(BaCx1, Yoy —BalXa, Y1) +(BsCx1, Y2) — Br{X3, ¥3))
+(B1p(R2)p(Rs) — B2p(R1)p(R3)) + (2Bses fa — 2B o)}
+{(R(x1R3, y3) + R(x3, y2R1) — [R(x2, y1)R5])
+([R(x1, y2)Rs] — R(x5R;, y3) — R(x3, y1Rz))
+ (21 R(Y2; ¥3) — @aR(y1, ¥3) — el y1, y2>U)
+(B1R(x3, X2) —B2R(x3, X1) +Balx1, X2)U)
+(@1B3p(Rz) — agfap(R1))U
+ (2af1p(R3) — aaBap(R1)) U+ ([[Ry R;1Rs])}-
If the subscripts of each term in parenthesis above are permuted cyclically and the
resulting three terms summed, the summand will be zero. Hence, the Jacobi identity

holds in &, and & is a Lie algebra.
We shall next give a condition for simplicity of .

THEOREM 1. If M is a vector space over a field © with an alternating bilinear form
{, > and a ternary product { , , ) satisfying (T1)~(T4) and if S=S(M, R(M)) is
constructed as above then & is a simple Lie algebra if and only if { , > is non-
degenerate.

The theorem will follow from the next two lemmas, but first we shall define an
ideal of I to be a subspace & with {x;, x5, X3 € X for x, € &, x;, x,, € M, i, J, k are
not equal. M is simple, if M and {0} are the only ideals in M and (MMM) #0.
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LEMMA 2. Let M be as in Theorem 1 and let Rad (M)={xe M | <{x, y>=0
for all y e M}, then Rad (M) is an ideal of M containing every ideal I of M with
S#M.

Proof. If x e I#M an ideal of M, then <{x, ydz=<x, y, z)—<y, x, z) for all
¥, z € M implies x € Rad (M). On the other hand, we see {{xy, X3, X3, x4> =0 for
x; € Rad (M), xy, xi, x, €M, i, j, k, I not equal, by (1.3). Hence, Rad () is an
ideal of M.

LEMMA 3. Let I be as in Theorem 1 and let S(M, R’) be the Lie algebra constructed
as above. If ® is an ideal of S(M, R’), then & N WM is an ideal of M. Also, if I is an
ideal of M, S#M, then I+ +R(S, M) is an ideal of S(M, R(M)) where R(Y, M)
is the subspace of R(IM) spanned by {R(x, y) | x€ &, y € M}.

Proof. Since {x,, x,, x3>=[x;[x3[x3#]]], the first statement is clear. The second
follows immediately from (2.8) and the fact I<Rad ().

To prove Theorem 1, we first assume { , > is nondegenerate. If £ %0 is an ideal
of S(M, R(M)), then (2.8) shows & N M+#0. By Lemmas 2 and 3, we have
& N M=IM. But I generates S(M, R(M)) by (2.8) so K=S(WM, R(M)). If _, >
is degenerate, then ¥=Rad (M) is a nonzero ideal of M. Hence f=+F+
R(I, M) is a nonzero ideal of S(M, R(M)). But & = S(M, R(M)), since u ¢ K.

3. A characterization of the Lie algebras. In this section, we shall obtain a
characterization of the Lie algebras &(M, R') constructed as in §2 from a module
IR over a commutative associative ring ® with 1 containing 4 with $+4=1 where
M possesses an alternating bilinear form < , > and ternary product < , , >
satisfying (T1)~(T4). Let @ =&(IM, R’) be such a Lie algebra, and let e=u, f=4,
and A= U. We have by (2.8) that

3.0 [ef] = h, [eh] = 2e, [fh] = —2f.

Hence, the subalgebra % = ®e + ®f+ ®h of & has a faithful representation v — va,
veV,ae, on V==>v; @ Dv, given by

(B.2) ve=0, vee= —v; v f = vy, vof = 0; v h = vy, Vh= —v,

If x € I, then the A-submodule of S under the adjoint action of %A generated by
x is ®x+ ®X which is a homomorphic image of V.

We note that if D € Homg (M, M) is a derivation (i.e., <x, y, z)D=<{xD, y, z>
+<x,yD, z)+<{x,y,zD)), then D can be extended uniquely to an element
D e ®R*(M) with p(D)=0. Conversely, D e R*(M) with p(D)=0 restricts to a
derivation of 9t. We shall identify D ={D e R*(IM) | p(D)=0} with the derivations
of M. We have an ideal D, of D consisting of elements of the form >; R(x;, y;)
with >, {x;, »,>=0. Such elements are called inner derivations of . Since % € D,
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1971] A CONSTRUCTION OF LIE ALGEBRAS 405

we see that R¥*(M)=PU @ D. Hence R'=0U @ D’ where D'=D N R’. We may
now write
(3.3) & =D (Px+PH)+A+D".
: xeMM
It is clear that D’ is the centralizer of % in &. Also, if D e D’, then [IRD]< It
and [, D]=D’ only if D=0. Hence, D’ contains no nonzero ideals of S. We
have shown half of

THEOREM 2. A Lie algebra © over a commutative associative ring ® s % is iso-

morphic to a Lie algebra S(M, R') constructed as in §2 if and only if S satisfies:
(i) & contains a subalgebra A= Pe+ Of+ ®h having a representation on V=
DPv; @ Do, given by (3.2),

(ii) & as an A module under the adjoint action is a sum of W, submodules which
are homomorphic images of V, and the centralizer ®' of A in S,

(iii) D’ contains no nonzero ideals of .

Proof. Let & satisfy (i)-(iii). Set S;={x € & | [xh]=ix, i=0, + 1, +2}. Clearly
B=6,+G;+B_;+8_,+8, and S,=0h D D’. Also, we see ;N 3,=0 for
i#j unless i—j=+3 and 3=0 in ®. Letting M (respectively M) be the set of
images of ®v, (respectively ®v,) under the homomorphisms of ¥ onto submodules
of &, we see M= S, and M S_,. It is clear that x — ¥=[xf] is a bijection of M
with . Also, Pec S,, Df =S _,, and

(3.4) C=MPOONOOU DI DD

We have [IMIMM]<S S, De+ . If [xy]=ae+Z with x,y,ze M, a € O, we see
—z=[[xyle]l=I[[xely]+ [x[ye]]=0. Hence [MI]< Pe, and we may define a skew
bilinear form ¢ , > on M by {x, yYe=[x, y], x, ye M.

One sees that [IM[MM]]c S, Of+ M. If [x[yZ]]=f+w with c € ®, we M,
then —eh=[[x[yZ]le]=[x[y[Ze]ll= — [x[yz]]= —<y, z>[x, e]=0. Hence

[m[mR]) < M,
and we may define a ternary product <{x, y, z>=[x[yZ]] € M for x, y, z € M.
Since <{x, y, z>=[[xy12]1+<p, x, z)={x, y>z+<{y, x, z) for x,y,ze M, we see
(T1) holds for M. A similar calculation shows (T2). To show (T3), we calculate
(<x, 3, 25, wde = [Ix[yZlw] = [Dowlly2)] + [wly21lx]
=X, wy, e+ w, y, 23, x)e;  x,y,z,wel.
Thus,
KX, 3, 20, Wy = L2, X, 5, W)+, 2)<{x, wy +<{x, 2){y, w)> (by (T2) and (T1))
= W, X, ¥D, 2D +<z, Wp<x, y>+<¥, 2)<x, w) +<{x, 2y, w>
= <<xs Y, W>, Z>+<Z, w><x, }’> (by (Tl) and (T2))
for x, y,z, we M.
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If x, y, z, v, we M and L=[v, W], then

KX ¥, 20, 0, wy = [Kx, y, 2DL] = {xL, y, z) +<x, yL, z) + [x[y[ZL]]]
= X, v, W)y, 2) +<x, (¥, v, W, 2) +<x, ¥, <z, w, v)>),
since
[2L] = [[f1L] = [[zL1f]+[=[fL]]
= <Z, v, W>~ + [z[.f[vw]]]] = <Z, v, W>~ —<U, W>Z = <Z, w, U>~.

Here we have used [f[ow]]= —[iW]e ®f and [[[D, Wlele]=2[[Del[We]] =2[vw]
=2(v, wye, so [iw]=<v, w)f. Thus, we have established (T4) and
3.5 [5w] = <v, w)f, v, we M,
(3.6) [Z[ow]] = <z, w, v)>~, z,v, we M.

If de®' and xeM, then [xd]e S, =M+ ®f. If [xd]=y+of, yeM, «a€®,
then —ah=[[xd]e]=0. Hence, [xd] € M, and we may define D, € Hom, (M, M)
by xD;=[xd] for x € M. We see that

3.7 [%d] = (xD;)~ for xe M, deD’.

Hencea <x9 Y, z>Dd=<de, s Z>+<xa de, Z>+<X, Y, ZDd> fOl' X, ), Z€ gﬁ, de@:,
and D, is a derivation.
We now may define a linear map ¢: & — S(M, R*(M)) by

(3.9 ¢ x+j+oe+pf+yh+d— x+J+oau+pi+yU+ D,y

where x, ye M, «, B,y € @, and d € D’. To check that ¢ is a Lie homomorphism,
we first note that the structure of € as an A-module yields [sa]® = [s°a®] for s € &,
a € A. Thus, we need only check

(3.9) [x, y1° = <x,0u,  x,yeM,
(3.10) [x,d]° = xD,, xeM,ded’,
@3.11) [%,71° = <x,y>8, x,yeM,
3.12) [% d]° = (xDg)~, xeM,deD,
(3.13) [ed)° = [D.D;], «¢,de®’,
3.19) [x91° = R(x, y), x,yeM.

We note that (3.9) and (3.10) follow by definition, that (3.11) and (3.12) follow
from (3.5) and (3.7) respectively, and that (3.13) is obvious. Since [e[xj]]=[xy]
=<{x, yye, [fIxyll=—I[%, 7l1=—<x, y>f and [h[x§]]=0 for x, y e M, we have
d=[xy]—3¥x, y>h e D'. Now z[xJ]°=2z(3{x, yO>U+ Dy)={z, x, y) for z € M, and
u[xy1°=<x, y>u imply [x§]°=R(x,y) to establish (3.14). Thus, ¢ Es a homo-
morphism.
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Since the kernel of ¢ is contained in ®’, condition (iii) implies that ¢ is an
isomorphism. Since R(M)c R'=(DPh+D')® by (3.14), we have & isomorphic to
S(M, R) as desired.

4. Identification of the Lie algebras. We wish to identify the simple Lie algebras
S(M, R(M)) constructed as in §2 from the ternary algebras of Example 1 with
{ , > nondegenerate and of Example 2 with ¥ an exceptional simple Jordan
algebra of dimension 27. We shall do this for ® a field of characteristic zero. Since
{ , > remains nondegenerate upon extension of the base field, we may assume in
both cases that ® is algebraically closed.

ExAMPLE 1. We first consider the derivation algebra of 9 which we have
identified with ® ={D € R*(M) | p(D)=0}. By (2.2) and (2.7), we have D= g, the
Lie algebra of linear transformations of 9t which are skew relative to { , >. An
immediate calculation shows however, D € & is a derivation of M. Thus, if dim M
=2l, we have that ® is a Lie algebra of type C, and dim D=1I(2/+1). Since D is
simple, we see that the inner derivation algebra D, ={3; R(x;, y)) | > <{x1, y>=0}=D
and R¥(M) =R(M).

Now S(M, REAM)=M DM D Ou @ ¢ @ U DD, so dim S(M, R(M))=
41+3+121+ )=+ 1)(2(+1)+1). By the classification theory of simple Lie
algebras, we see that S(M, R(M)) is of type C; ;.

ExAMPLE 2. Again we look first at the derivation algebra ®. As before, D € D is
skew relative to { , >. Thus,

0 = KX, 3, 2D, wy+ KX, y, 2), wD)y = {xD, y, z), wp +<<x, yD, z), w)
+{<x, ¥, 2D, wy +L<x, y, 2), wD) for x,y,z, we M,
and D is skew relative to the four-linear form q(x, y, z, w)={{x, y, z>, w>. Con-
versely, if D is skew relative to g and < , D, it is clear that D is a derivation of .

If Q is the quartic form Q(x)=gq(x, x, x, x), x € M, and if Q(x, y, z, w) is its
linearization, then we see by (1.3) and (1.2) that

O(x1, X3, X3, X4) = Z q(X17; X2, Xan, Xan) = 244(X1, X2, X3, X4) + A
neSy

where S, is the symmetric group on {1, 2, 3, 4} and A is a sum of terms of the form
{xy x5 {xys x». Hence, D is skew relative to { , > and q if and only if D is skew
relative to { , » and Q. Thus,

@y D = {D e Hom, (M, M) | Q(xD, x, X, X) = 0 and

’ ! <XD,}’>+<-’C,)’D> =O, x:yem}‘

Calculating Q, we find
O(x) = 24(aN(b)+BN(a)— T(a?*, b¥)+1(«B—T(a, b))*)

forx=(g ;), o,Bed, a,beg .

4.2)
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Thus, ® is a Lie algebra of type E; (see [6]), and dim ©=133. Since D is simple,
D;=D and R*¥(M)=R(M). Hence dim S(M, R(M))=2(56)+ 3+ 133=248. Thus,
by the classification of simple Lie algebras, we see that S(MM, R(M)) is of type Eg.
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