Systems of division problems for distributions
HTML articles powered by AMS MathViewer
- by B. Roth
- Trans. Amer. Math. Soc. 155 (1971), 493-504
- DOI: https://doi.org/10.1090/S0002-9947-1971-0415310-8
- PDF | Request permission
Abstract:
Suppose ${({f_{ij}})_{1 \leqq i,j \leqq p}}$ is a $p \times p$ matrix of real-valued infinitely (respectively $m$-times continuously) differentiable functions on an open subset $\Omega$ of ${R^n}$. Then ${({f_{ij}})_{1 \leqq i,j \leqq p}}$ maps the space of $p$-tuples of distributions on $\Omega$ (respectively distributions of order $\leqq m$ on $\Omega$) into itself. In the present paper, the $p \times p$ matrices ${({f_{ij}})_{1 \leqq i,j \leqq p}}$ for which this mapping is onto are characterized in terms of the zeros of the determinant of ${({f_{ij}})_{1 \leqq i,j \leqq p}}$ when the ${f_{ij}}$ are infinitely differentiable on $\Omega \subset {R^1}$ and when the ${f_{ij}}$ are $m$-times continuously differentiable on $\Omega \subset {R^n}$. Finally, partial results are obtained when the ${f_{ij}}$ are infinitely differentiable on $\Omega \subset {R^n}$ and extensions are made to $p \times q$ systems of division problems for distributions.References
- Jean Dieudonné and Laurent Schwartz, La dualité dans les espaces $\scr F$ et $(\scr L\scr F)$, Ann. Inst. Fourier (Grenoble) 1 (1949), 61–101 (1950) (French). MR 38553
- Lars Hörmander, On the division of distributions by polynomials, Ark. Mat. 3 (1958), 555–568. MR 124734, DOI 10.1007/BF02589517
- S. Łojasiewicz, Sur le problème de la division, Studia Math. 18 (1959), 87–136 (French). MR 107168, DOI 10.4064/sm-18-1-87-136
- B. Malgrange, Ideals of differentiable functions, Tata Institute of Fundamental Research Studies in Mathematics, vol. 3, Tata Institute of Fundamental Research, Bombay; Oxford University Press, London, 1967. MR 0212575 —, Division des distributions, Séminaire Schwartz 1959/60, Faculté des Sciences, Paris, 1960, pp. 21-25. MR 23 #A2275.
- B. Roth, Finitely generated ideals of differentiable functions, Trans. Amer. Math. Soc. 150 (1970), 213–225. MR 262810, DOI 10.1090/S0002-9947-1970-0262810-9
- Laurent Schwartz, Théorie des distributions, Publications de l’Institut de Mathématique de l’Université de Strasbourg, IX-X, Hermann, Paris, 1966 (French). Nouvelle édition, entiérement corrigée, refondue et augmentée. MR 0209834
- Hassler Whitney, On ideals of differentiable functions, Amer. J. Math. 70 (1948), 635–658. MR 26238, DOI 10.2307/2372203
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 155 (1971), 493-504
- MSC: Primary 46F10; Secondary 58C25
- DOI: https://doi.org/10.1090/S0002-9947-1971-0415310-8
- MathSciNet review: 0415310