## Systems of division problems for distributions

HTML articles powered by AMS MathViewer

- by B. Roth PDF
- Trans. Amer. Math. Soc.
**155**(1971), 493-504 Request permission

## Abstract:

Suppose ${({f_{ij}})_{1 \leqq i,j \leqq p}}$ is a $p \times p$ matrix of real-valued infinitely (respectively $m$-times continuously) differentiable functions on an open subset $\Omega$ of ${R^n}$. Then ${({f_{ij}})_{1 \leqq i,j \leqq p}}$ maps the space of $p$-tuples of distributions on $\Omega$ (respectively distributions of order $\leqq m$ on $\Omega$) into itself. In the present paper, the $p \times p$ matrices ${({f_{ij}})_{1 \leqq i,j \leqq p}}$ for which this mapping is onto are characterized in terms of the zeros of the determinant of ${({f_{ij}})_{1 \leqq i,j \leqq p}}$ when the ${f_{ij}}$ are infinitely differentiable on $\Omega \subset {R^1}$ and when the ${f_{ij}}$ are $m$-times continuously differentiable on $\Omega \subset {R^n}$. Finally, partial results are obtained when the ${f_{ij}}$ are infinitely differentiable on $\Omega \subset {R^n}$ and extensions are made to $p \times q$ systems of division problems for distributions.## References

- Jean Dieudonné and Laurent Schwartz,
*La dualité dans les espaces $\scr F$ et $(\scr L\scr F)$*, Ann. Inst. Fourier (Grenoble)**1**(1949), 61–101 (1950) (French). MR**38553** - Lars Hörmander,
*On the division of distributions by polynomials*, Ark. Mat.**3**(1958), 555–568. MR**124734**, DOI 10.1007/BF02589517 - S. Łojasiewicz,
*Sur le problème de la division*, Studia Math.**18**(1959), 87–136 (French). MR**107168**, DOI 10.4064/sm-18-1-87-136 - B. Malgrange,
*Ideals of differentiable functions*, Tata Institute of Fundamental Research Studies in Mathematics, vol. 3, Tata Institute of Fundamental Research, Bombay; Oxford University Press, London, 1967. MR**0212575**
—, - B. Roth,
*Finitely generated ideals of differentiable functions*, Trans. Amer. Math. Soc.**150**(1970), 213–225. MR**262810**, DOI 10.1090/S0002-9947-1970-0262810-9 - Laurent Schwartz,
*Théorie des distributions*, Publications de l’Institut de Mathématique de l’Université de Strasbourg, IX-X, Hermann, Paris, 1966 (French). Nouvelle édition, entiérement corrigée, refondue et augmentée. MR**0209834** - Hassler Whitney,
*On ideals of differentiable functions*, Amer. J. Math.**70**(1948), 635–658. MR**26238**, DOI 10.2307/2372203

*Division des distributions*, Séminaire Schwartz 1959/60, Faculté des Sciences, Paris, 1960, pp. 21-25. MR

**23**#A2275.

## Additional Information

- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**155**(1971), 493-504 - MSC: Primary 46F10; Secondary 58C25
- DOI: https://doi.org/10.1090/S0002-9947-1971-0415310-8
- MathSciNet review: 0415310