The prime radical in special Jordan rings
HTML articles powered by AMS MathViewer
- by T. S. Erickson and S. Montgomery
- Trans. Amer. Math. Soc. 156 (1971), 155-164
- DOI: https://doi.org/10.1090/S0002-9947-1971-0274543-4
- PDF | Request permission
Abstract:
If R is an associative ring, we consider the special Jordan ring ${R^ + }$, and when R has an involution, the special Jordan ring S of symmetric elements. We first show that the prime radical of R equals the prime radical of ${R^ + }$, and that the prime radical of R intersected with S is the prime radical of S. Next we give an elementary characterization, in terms of the associative structure of R, of primeness of S. Finally, we show that a prime ideal of R intersected with S is a prime Jordan ideal of S.References
- Nathan Jacobson, Structure of rings, American Mathematical Society Colloquium Publications, Vol. 37, American Mathematical Society, 190 Hope Street, Providence, R.I., 1956. MR 0081264, DOI 10.1090/coll/037
- N. Jacobson, Structure theory for a class of Jordan algebras, Proc. Nat. Acad. Sci. U.S.A. 55 (1966), 243–251. MR 193116, DOI 10.1073/pnas.55.2.243
- Wallace S. Martindale III, Rings with involution and polynomial identities, J. Algebra 11 (1969), 186–194. MR 234990, DOI 10.1016/0021-8693(69)90053-2
- Kevin McCrimmon, A general theory of Jordan rings, Proc. Nat. Acad. Sci. U.S.A. 56 (1966), 1072–1079. MR 202783, DOI 10.1073/pnas.56.4.1072
- Kevin McCrimmon, On Herstein’s theorems relating Jordan and associative algebras, J. Algebra 13 (1969), 382–392. MR 249476, DOI 10.1016/0021-8693(69)90081-7
- Kevin McCrimmon, The radical of a Jordan algebra, Proc. Nat. Acad. Sci. U.S.A. 62 (1969), 671–678. MR 268238, DOI 10.1073/pnas.62.3.671
- Chester Tsai, The prime radical in a Jordan ring, Proc. Amer. Math. Soc. 19 (1968), 1171–1175. MR 230776, DOI 10.1090/S0002-9939-1968-0230776-X
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 156 (1971), 155-164
- MSC: Primary 17.40; Secondary 16.00
- DOI: https://doi.org/10.1090/S0002-9947-1971-0274543-4
- MathSciNet review: 0274543