Conjugacy separability of certain free products with amalgamation
HTML articles powered by AMS MathViewer
- by Peter F. Stebe
- Trans. Amer. Math. Soc. 156 (1971), 119-129
- DOI: https://doi.org/10.1090/S0002-9947-1971-0274597-5
- PDF | Request permission
Abstract:
Let G be a group. An element g of G is called conjugacy distinguished or c.d. in G if and only if given any element h of G either h is conjugate to g or there is a homomorphism $\xi$ from G onto a finite group such that $\xi (h)$ and $\xi (g)$ are not conjugate in $\xi (G)$. Following A. Mostowski, a group G is conjugacy separable or c.s. if and only if every element of G is c.d. in G. In this paper we prove that every element conjugate to a cyclically reduced element of length greater than 1 in the free product of two free groups with a cyclic amalgamated subgroup is c.d. We also prove that a group formed by adding a root of an element to a free group is c.s.References
- Seymour Lipschutz, Generalization of Dehn’s result on the conjugacy problem, Proc. Amer. Math. Soc. 17 (1966), 759–762. MR 0197541, DOI 10.1090/S0002-9939-1966-0197541-1
- Abraham Karrass and Donald Solitar, On finitely generated subgroups of a free group, Proc. Amer. Math. Soc. 22 (1969), 209–213. MR 245655, DOI 10.1090/S0002-9939-1969-0245655-2 W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, Pure and Appl. Math., vol. 13, Interscience, New York, 1966. MR 34 #7617.
- A. Włodzimierz Mostowski, On the decidability of some problems in special classes of groups, Fund. Math. 59 (1966), 123–135. MR 224693, DOI 10.4064/fm-59-2-123-135
- B. H. Neumann, An essay on free products of groups with amalgamations, Philos. Trans. Roy. Soc. London Ser. A 246 (1954), 503–554. MR 62741, DOI 10.1098/rsta.1954.0007 A. Speiser, Theorie der Gruppen von endlicher Ordnung, 3rd ed., Springer, Berlin, 1936.
- P. F. Stebe, A residual property of certain groups, Proc. Amer. Math. Soc. 26 (1970), 37–42. MR 260874, DOI 10.1090/S0002-9939-1970-0260874-5
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 156 (1971), 119-129
- MSC: Primary 20.52
- DOI: https://doi.org/10.1090/S0002-9947-1971-0274597-5
- MathSciNet review: 0274597