Semigroups on finitely floored spaces
HTML articles powered by AMS MathViewer
- by John D. McCharen
- Trans. Amer. Math. Soc. 156 (1971), 85-89
- DOI: https://doi.org/10.1090/S0002-9947-1971-0274641-5
- PDF | Request permission
Abstract:
This paper is concerned with certain aspects of acyclicity in a compact connected topological semigroup, and applications to the admissibility of certain multiplications on continua. The principal result asserts that if S is a semigroup on a continuum, finitely floored in dimension 2, then $S = ESE$ implies $S = K$.References
- Haskell Cohen and R. J. Koch, Acyclic semigroups and multiplications on two-manifolds, Trans. Amer. Math. Soc. 118 (1965), 420β427. MR 175098, DOI 10.1090/S0002-9947-1965-0175098-2
- Anne L. Hudson, Example of a nonacyclic continuum semigroup $S$ with zero and $S=ESE$, Proc. Amer. Math. Soc. 14 (1963), 648β653. MR 151940, DOI 10.1090/S0002-9939-1963-0151940-X
- Karl Heinrich Hofmann and Paul S. Mostert, Elements of compact semigroups, Charles E. Merrill Books, Inc., Columbus, Ohio, 1966. MR 0209387
- A. D. Wallace, The structure of topological semigroups, Bull. Amer. Math. Soc. 61 (1955), 95β112. MR 67907, DOI 10.1090/S0002-9904-1955-09895-1
- A. D. Wallace, A theorem on acyclicity, Bull. Amer. Math. Soc. 67 (1961), 123β124. MR 124886, DOI 10.1090/S0002-9904-1961-10534-X
- A. D. Wallace, The map excision theorem, Duke Math. J. 19 (1952), 177β182. MR 46646, DOI 10.1215/S0012-7094-52-01918-2
- A. D. Wallace, Retractions in semigroups, Pacific J. Math. 7 (1957), 1513β1517. MR 95902, DOI 10.2140/pjm.1957.7.1513
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 156 (1971), 85-89
- MSC: Primary 22.05; Secondary 55.00
- DOI: https://doi.org/10.1090/S0002-9947-1971-0274641-5
- MathSciNet review: 0274641