Generalized interpolation spaces
HTML articles powered by AMS MathViewer
- by Vernon Williams
- Trans. Amer. Math. Soc. 156 (1971), 309-334
- DOI: https://doi.org/10.1090/S0002-9947-1971-0275149-3
- PDF | Request permission
Abstract:
In this paper we introduce the notion of “generalized” interpolation space, and state and prove a “generalized” interpolation theorem. This apparently provides a foundation for an axiomatic treatment of interpolation space theory, for subsequently we show that the “mean” interpolation spaces of Lions-Peetre, the “complex” interpolation spaces of A. P. Calderón, and the “complex” interpolation spaces of M. Schechter are all generalized interpolation spaces. Furthermore, we prove that each of the interpolation theorems established respectively for the above-mentioned interpolation spaces is indeed a special case of our generalized interpolation theorem. In §III of this paper we use the generalized interpolation space concept to state and prove a “generalized” duality theorem. The very elegant duality theorems proved by Calderón, Lions-Peetre and Schechter, respectively, are shown to be special cases of our generalized duality theorem. Of special interest here is the isolation by the general theorem of the need in each of the separate theorems for certain “base” spaces to be duals of others. At the close of §II of this paper we employ our generalized interpolation theorem “structure” to construct new interpolation spaces which are neither complex nor mean spaces.References
- A.-P. Calderón, Intermediate spaces and interpolation, Studia Math. (Ser. Specjalna) Zeszyt 1 (1963), 31–34. MR 0147896
- A.-P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113–190. MR 167830, DOI 10.4064/sm-24-2-113-190
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- Peter D. Lax, Symmetrizable linear transformations, Comm. Pure Appl. Math. 7 (1954), 633–647. MR 68116, DOI 10.1002/cpa.3160070403
- Jacques-Louis Lions, Une construction d’espaces d’interpolation, C. R. Acad. Sci. Paris 251 (1960), 1853–1855 (French). MR 119093
- J.-L. Lions and J. Peetre, Sur une classe d’espaces d’interpolation, Inst. Hautes Études Sci. Publ. Math. 19 (1964), 5–68 (French). MR 165343, DOI 10.1007/BF02684796
- Enrico Magenes, Spazi d’interpolazione ed equazioni a derivate parziali, Atti del Settimo Congresso dell’Unione Matematica Italiana (Genova, 1963) Edizioni Cremonese, Rome, 1965, pp. 134–197 (Italian). MR 0215082 J. Marcinkiewicz, Sur l’interpolation d’opérateurs, C. R. Acad. Sci. Paris 208 (1939), 1272-1273.
- Frigyes Riesz and Béla Sz.-Nagy, Functional analysis, Frederick Ungar Publishing Co., New York, 1955. Translated by Leo F. Boron. MR 0071727
- Marcel Riesz, Sur les maxima des formes bilinéaires et sur les fonctionnelles linéaires, Acta Math. 49 (1927), no. 3-4, 465–497 (French). MR 1555250, DOI 10.1007/BF02564121
- Martin Schechter, Complex interpolation, Compositio Math. 18 (1967), 117–147 (1967). MR 223880
- Martin Schechter, General boundary value problems for elliptic partial differential equations, Comm. Pure Appl. Math. 12 (1959), 457–486. MR 125323, DOI 10.1002/cpa.3160120305
- Martin Schechter, On $L^{p}$ estimates and regularity. I, Amer. J. Math. 85 (1963), 1–13. MR 188615, DOI 10.2307/2373179
- Martin Schechter, On $L^{p}$ estimates and regularity. II, Math. Scand. 13 (1963), 47–69. MR 188616, DOI 10.7146/math.scand.a-10688
- Angus E. Taylor, Introduction to functional analysis, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1958. MR 0098966 E. C. Titchmarsh, Theory of functions, Oxford Univ. Press, London, 1939.
- A. H. Zemanian, Distribution theory and transform analysis. An introduction to generalized functions, with applications, McGraw-Hill Book Co., New York-Toronto-London-Sydney, 1965. MR 0177293
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 156 (1971), 309-334
- MSC: Primary 46.38
- DOI: https://doi.org/10.1090/S0002-9947-1971-0275149-3
- MathSciNet review: 0275149