Algebras of iterated path integrals and fundamental groups
HTML articles powered by AMS MathViewer
- by Kuo-tsai Chen PDF
- Trans. Amer. Math. Soc. 156 (1971), 359-379 Request permission
Abstract:
A method of iterated integration along paths is used to extend deRham cohomology theory to a homotopy theory on the fundamental group level. For every connected ${C^\infty }$ manifold $\mathfrak {M}$ with a base point p, we construct an algebra ${\pi ^1} = {\pi ^1}(\mathfrak {M},p)$ consisting of iterated integrals, whose value along each loop at p depends only on the homotopy class of the loop. Thus ${\pi ^1}$ can be taken as a commutative algebra of functions on the fundamental group ${\pi _1}(\mathfrak {M})$, whose multiplication induces a comultiplication ${\pi ^1} \to {\pi ^1} \otimes {\pi ^1}$, which makes ${\pi ^1}$ a Hopf algebra. The algebra ${\pi ^1}$ relates the fundamental group to analysis of the manifold, and we obtain some analytical conditions which are sufficient to make the fundamental group nonabelian or nonsolvable. We also show that ${\pi ^1}$ depends essentially only on the differentiable homotopy type of the manifold. The second half of the paper is devoted to the study of structures of algebras of iterated path integrals. We prove that such algebras can be constructed algebraically from the following data: (a) the commutative algebra A of ${C^\infty }$ functions on $\mathfrak {M}$; (b) the A-module M of ${C^\infty }$ 1-forms on $\mathfrak {M}$; (c) the usual differentiation $d:A \to M$; and (d) the evaluation map at the base point p, $\varepsilon :A \to K$, K being the real (or complex) number field.References
- Kuo-Tsai Chen, Iterated integrals and exponential homomorphisms, Proc. London Math. Soc. (3) 4 (1954), 502–512. MR 73174, DOI 10.1112/plms/s3-4.1.502
- Kuo-Tsai Chen, Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula, Ann. of Math. (2) 65 (1957), 163–178. MR 85251, DOI 10.2307/1969671
- Kuo-Tsai Chen, Integration of paths—a faithful representation of paths by non-commutative formal power series, Trans. Amer. Math. Soc. 89 (1958), 395–407. MR 106258, DOI 10.1090/S0002-9947-1958-0106258-0
- Kuo-Tsai Chen, Exponential isomorphism for vector spaces and its connection with Lie groups, J. London Math. Soc. 33 (1958), 170–177. MR 106257, DOI 10.1112/jlms/s1-33.2.170
- Kuo-tsai Chen, Formal differential equations, Ann. of Math. (2) 73 (1961), 110–133. MR 150370, DOI 10.2307/1970284
- Kuo-tsai Chen, Iterated path integrals and generalized paths, Bull. Amer. Math. Soc. 73 (1967), 935–938. MR 217717, DOI 10.1090/S0002-9904-1967-11858-5
- Kuo-tsai Chen, Algebraic paths, J. Algebra 10 (1968), 8–36. MR 229630, DOI 10.1016/0021-8693(68)90102-6
- Kuo-tsai Chen, Homotopy of algebras, J. Algebra 10 (1968), 183–193. MR 232804, DOI 10.1016/0021-8693(68)90094-X
- Kuo-tsai Chen, An algebraic dualization of fundamental groups, Bull. Amer. Math. Soc. 75 (1969), 1020–1024. MR 260834, DOI 10.1090/S0002-9904-1969-12345-1
- Kuo Tsai Chen, Covering-space-like algebras, J. Algebra 13 (1969), 308–326. MR 263803, DOI 10.1016/0021-8693(69)90077-5
- Kuo-tsai Chen, A sufficient condition for nonabelianness of fundamental groups of differentiable manifolds, Proc. Amer. Math. Soc. 26 (1970), 196–198. MR 279822, DOI 10.1090/S0002-9939-1970-0279822-7
- H. H. Johnson, A generalization of K. T. Chen’s invariants for paths under transformation groups, Trans. Amer. Math. Soc. 105 (1962), 453–461. MR 141728, DOI 10.1090/S0002-9947-1962-0141728-1
- David Kraines, Massey higher products, Trans. Amer. Math. Soc. 124 (1966), 431–449. MR 202136, DOI 10.1090/S0002-9947-1966-0202136-1
- W. S. Massey, Some higher order cohomology operations, Symposium internacional de topología algebraica International symposium on algebraic topology, Universidad Nacional Autónoma de México and UNESCO, Mexico City, 1958, pp. 145–154. MR 0098366
- John W. Milnor and John C. Moore, On the structure of Hopf algebras, Ann. of Math. (2) 81 (1965), 211–264. MR 174052, DOI 10.2307/1970615
- A. N. Paršin, On a certain generalization of Jacobian manifold, Izv. Akad. Nauk SSSR Ser. Mat. 30 (1966), 175–182 (Russian). MR 0196770
- Rimhak Ree, Lie elements and an algebra associated with shuffles, Ann. of Math. (2) 68 (1958), 210–220. MR 100011, DOI 10.2307/1970243
- Moss E. Sweedler, Hopf algebras, Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York, 1969. MR 0252485
- André Weil, Introduction à l’étude des variétés kählériennes, Publications de l’Institut de Mathématique de l’Université de Nancago, VI. Actualités Sci. Ind. no. 1267, Hermann, Paris, 1958 (French). MR 0111056
Additional Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 156 (1971), 359-379
- MSC: Primary 53.45; Secondary 55.00
- DOI: https://doi.org/10.1090/S0002-9947-1971-0275312-1
- MathSciNet review: 0275312