On the signature of knots and links
HTML articles powered by AMS MathViewer
 by Yaichi Shinohara PDF
 Trans. Amer. Math. Soc. 156 (1971), 273285 Request permission
Abstract:
In 1965, K. Murasugi introduced an integral matrix M of a link and defined the signature of the link by the signature of $M + M’$. In this paper, we study some basic properties of the signature of links. We also describe the effect produced on the signature of a knot contained in a solid torus by a further knotting of the solid torus.References

D. Erle, Die quadratische Form eines Knotens und ein Satz über Knotenmannigfaltigkeiten, Dissertation, Bonn, 1967.
 Ralph H. Fox, Free differential calculus. II. The isomorphism problem of groups, Ann. of Math. (2) 59 (1954), 196–210. MR 62125, DOI 10.2307/1969686
 Ralph H. Fox, Free differential calculus. V. The Alexander matrices reexamined, Ann. of Math. (2) 71 (1960), 408–422. MR 111781, DOI 10.2307/1969936
 Fujitsugu Hosokawa, On $\nabla$polynomials of links, Osaka Math. J. 10 (1958), 273–282. MR 102820
 J. Levine, Knot cobordism groups in codimension two, Comment. Math. Helv. 44 (1969), 229–244. MR 246314, DOI 10.1007/BF02564525
 John Milnor, On simply connected $4$manifolds, Symposium internacional de topología algebraica International symposium on algebraic topology, Universidad Nacional Autónoma de México and UNESCO, Mexico City, 1958, pp. 122–128. MR 0103472
 John W. Milnor, Infinite cyclic coverings, Conference on the Topology of Manifolds (Michigan State Univ., E. Lansing, Mich., 1967) Prindle, Weber & Schmidt, Boston, Mass., 1968, pp. 115–133. MR 0242163
 Kunio Murasugi, On a certain numerical invariant of link types, Trans. Amer. Math. Soc. 117 (1965), 387–422. MR 171275, DOI 10.1090/S00029947196501712755
 H. Seifert, Über das Geschlecht von Knoten, Math. Ann. 110 (1935), no. 1, 571–592 (German). MR 1512955, DOI 10.1007/BF01448044
 H. Seifert, On the homology invariants of knots, Quart. J. Math. Oxford Ser. (2) 1 (1950), 23–32. MR 35436, DOI 10.1093/qmath/1.1.23 Y. Shinohara, On the signature of knots and links, Dissertation, Florida State University, Tallahassee, Fla., 1969.
 H. F. Trotter, Homology of group systems with applications to knot theory, Ann. of Math. (2) 76 (1962), 464–498. MR 143201, DOI 10.2307/1970369
Additional Information
 © Copyright 1971 American Mathematical Society
 Journal: Trans. Amer. Math. Soc. 156 (1971), 273285
 MSC: Primary 55.20
 DOI: https://doi.org/10.1090/S00029947197102754151
 MathSciNet review: 0275415