Theory of random evolutions with applications to partial differential equations
HTML articles powered by AMS MathViewer
- by Richard Griego and Reuben Hersh
- Trans. Amer. Math. Soc. 156 (1971), 405-418
- DOI: https://doi.org/10.1090/S0002-9947-1971-0275507-7
- PDF | Request permission
Abstract:
The selection from a finite number of strongly continuous semigroups by means of a finite-state Markov chain leads to the new notion of a random evolution. Random evolutions are used to obtain probabilistic solutions to abstract systems of differential equations. Applications include one-dimensional first order hyperbolic systems. An important special case leads to consideration of abstract telegraph equations and a generalization of a result of Kac on the classical n-dimensional telegraph equation is obtained and put in a more natural setting. In this connection a singular perturbation theorem for an abstract telegraph equation is proved by means of a novel application of the classical central limit theorem and a representation of the solution for the limiting equation is found in terms of a transformation formula involving the Gaussian distribution.References
- Garrett Birkhoff and Robert E. Lynch, Numerical solution of the telegraph and related equations, Numerical Solution of Partial Differential Equations (Proc. Sympos. Univ. Maryland, 1965) Academic Press, New York, 1966, pp. 289–315. MR 0203953
- Kai Lai Chung, Markov chains with stationary transition probabilities, Die Grundlehren der mathematischen Wissenschaften, Band 104, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1960. MR 0116388, DOI 10.1007/978-3-642-49686-8
- S. Goldstein, On diffusion by discontinuous movements, and on the telegraph equation, Quart. J. Mech. Appl. Math. 4 (1951), 129–156. MR 47963, DOI 10.1093/qjmam/4.2.129
- R. J. Griego and R. Hersh, Random evolutions, Markov chains, and systems of partial differential equations, Proc. Nat. Acad. Sci. U.S.A. 62 (1969), 305–308. MR 270207, DOI 10.1073/pnas.62.2.305
- Reuben Hersh, Explicit solution of a class of higher-order abstract Cauchy problems, J. Differential Equations 8 (1970), 570–579. MR 270210, DOI 10.1016/0022-0396(70)90030-6
- Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, Vol. 31, American Mathematical Society, Providence, R.I., 1957. rev. ed. MR 0089373 M. Kac, Some stochastic problems in physics and mathematics, Magnolia Petroleum Co., Lectures in Pure and Applied Science, no. 2, 1956.
- Mark Pinsky, Differential equations with a small parameter and the central limit theorem for functions defined on a finite Markov chain, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 9 (1968), 101–111. MR 228067, DOI 10.1007/BF01851001
- N. P. Romanoff, On one-parameter groups of linear transformations. I, Ann. of Math. (2) 48 (1947), 216–233. MR 20218, DOI 10.2307/1969167
- Frank S. Scalora, Abstract martingale convergence theorems, Pacific J. Math. 11 (1961), 347–374. MR 123356, DOI 10.2140/pjm.1961.11.347
- Andrew Y. Schoene, Semi-groups and a class of singular perturbation problems, Indiana Univ. Math. J. 20 (1970/71), 247–263. MR 283622, DOI 10.1512/iumj.1970.20.20023
- Joel A. Smoller, Singular perturbations of Cauchy’s problem, Comm. Pure Appl. Math. 18 (1965), 665–677. MR 185240, DOI 10.1002/cpa.3160180406
- Stanley Kaplan, Differential equations in which the Poisson process plays a role, Bull. Amer. Math. Soc. 70 (1964), 264–268. MR 158183, DOI 10.1090/S0002-9904-1964-11112-5
- L. Bobisud and R. Hersh, Perturbation and approximation theory for higher-order abstract Cauchy problems, Rocky Mountain J. Math. 2 (1972), no. 1, 57–73. MR 294913, DOI 10.1216/RMJ-1972-2-1-57
- Kôsaku Yosida, Functional analysis, 2nd ed., Die Grundlehren der mathematischen Wissenschaften, Band 123, Springer-Verlag New York, Inc., New York, 1968. MR 0239384, DOI 10.1007/978-3-662-11791-0
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 156 (1971), 405-418
- MSC: Primary 60.40; Secondary 35.00
- DOI: https://doi.org/10.1090/S0002-9947-1971-0275507-7
- MathSciNet review: 0275507