## Theory of random evolutions with applications to partial differential equations

HTML articles powered by AMS MathViewer

- by Richard Griego and Reuben Hersh PDF
- Trans. Amer. Math. Soc.
**156**(1971), 405-418 Request permission

## Abstract:

The selection from a finite number of strongly continuous semigroups by means of a finite-state Markov chain leads to the new notion of a random evolution. Random evolutions are used to obtain probabilistic solutions to abstract systems of differential equations. Applications include one-dimensional first order hyperbolic systems. An important special case leads to consideration of abstract telegraph equations and a generalization of a result of Kac on the classical*n*-dimensional telegraph equation is obtained and put in a more natural setting. In this connection a singular perturbation theorem for an abstract telegraph equation is proved by means of a novel application of the classical central limit theorem and a representation of the solution for the limiting equation is found in terms of a transformation formula involving the Gaussian distribution.

## References

- Garrett Birkhoff and Robert E. Lynch,
*Numerical solution of the telegraph and related equations*, Numerical Solution of Partial Differential Equations (Proc. Sympos. Univ. Maryland, 1965) Academic Press, New York, 1966, pp. 289–315. MR**0203953** - Kai Lai Chung,
*Markov chains with stationary transition probabilities*, Die Grundlehren der mathematischen Wissenschaften, Band 104, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1960. MR**0116388**, DOI 10.1007/978-3-642-49686-8 - S. Goldstein,
*On diffusion by discontinuous movements, and on the telegraph equation*, Quart. J. Mech. Appl. Math.**4**(1951), 129–156. MR**47963**, DOI 10.1093/qjmam/4.2.129 - R. J. Griego and R. Hersh,
*Random evolutions, Markov chains, and systems of partial differential equations*, Proc. Nat. Acad. Sci. U.S.A.**62**(1969), 305–308. MR**270207**, DOI 10.1073/pnas.62.2.305 - Reuben Hersh,
*Explicit solution of a class of higher-order abstract Cauchy problems*, J. Differential Equations**8**(1970), 570–579. MR**270210**, DOI 10.1016/0022-0396(70)90030-6 - Einar Hille and Ralph S. Phillips,
*Functional analysis and semi-groups*, American Mathematical Society Colloquium Publications, Vol. 31, American Mathematical Society, Providence, R.I., 1957. rev. ed. MR**0089373**
M. Kac, - Mark Pinsky,
*Differential equations with a small parameter and the central limit theorem for functions defined on a finite Markov chain*, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete**9**(1968), 101–111. MR**228067**, DOI 10.1007/BF01851001 - N. P. Romanoff,
*On one-parameter groups of linear transformations. I*, Ann. of Math. (2)**48**(1947), 216–233. MR**20218**, DOI 10.2307/1969167 - Frank S. Scalora,
*Abstract martingale convergence theorems*, Pacific J. Math.**11**(1961), 347–374. MR**123356**, DOI 10.2140/pjm.1961.11.347 - Andrew Y. Schoene,
*Semi-groups and a class of singular perturbation problems*, Indiana Univ. Math. J.**20**(1970/71), 247–263. MR**283622**, DOI 10.1512/iumj.1970.20.20023 - Joel A. Smoller,
*Singular perturbations of Cauchy’s problem*, Comm. Pure Appl. Math.**18**(1965), 665–677. MR**185240**, DOI 10.1002/cpa.3160180406 - Stanley Kaplan,
*Differential equations in which the Poisson process plays a role*, Bull. Amer. Math. Soc.**70**(1964), 264–268. MR**158183**, DOI 10.1090/S0002-9904-1964-11112-5 - L. Bobisud and R. Hersh,
*Perturbation and approximation theory for higher-order abstract Cauchy problems*, Rocky Mountain J. Math.**2**(1972), no. 1, 57–73. MR**294913**, DOI 10.1216/RMJ-1972-2-1-57 - Kôsaku Yosida,
*Functional analysis*, 2nd ed., Die Grundlehren der mathematischen Wissenschaften, Band 123, Springer-Verlag New York, Inc., New York, 1968. MR**0239384**, DOI 10.1007/978-3-662-11791-0

*Some stochastic problems in physics and mathematics*, Magnolia Petroleum Co., Lectures in Pure and Applied Science, no. 2, 1956.

## Additional Information

- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**156**(1971), 405-418 - MSC: Primary 60.40; Secondary 35.00
- DOI: https://doi.org/10.1090/S0002-9947-1971-0275507-7
- MathSciNet review: 0275507