Expanding gravitational systems
HTML articles powered by AMS MathViewer
- by Donald G. Saari
- Trans. Amer. Math. Soc. 156 (1971), 219-240
- DOI: https://doi.org/10.1090/S0002-9947-1971-0275729-5
- PDF | Request permission
Abstract:
In this paper we obtain a classification of motion for Newtonian gravitational systems as time approaches infinity. The basic assumption is that the motion survives long enough to be studied, i.e., the solution exists in the interval $(0,\infty )$. From this classification it is possible to obtain a sketch of the evolving Newtonian universe.References
- J. Chazy, Ann. Sci. École Norm. Sup. 39 (1922).
- R. P. Boas Jr., A Tauberian Theorem Connected with the Problem of Three Bodies, Amer. J. Math. 61 (1939), no. 1, 161–164. MR 1507368, DOI 10.2307/2371395
- J. Karamata, Über einen Tauberschen Satz im Dreikörperproblem, Amer. J. Math. 61 (1939), 769–770 (German). MR 63, DOI 10.2307/2371334 D. C. Lewis, Comments on the Sundman inequality, NASA PM-67-21, 1968, pp. 129-140. —, Approximate decoupling in the n-body problem, NASA PM-67-21, 1968, pp. 141-173.
- Harry Pollard, Mathematical introduction to celestial mechanics, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1966. MR 0197175
- Harry Pollard, The behavior of gravitational systems, J. Math. Mech. 17 (1967/1968), 601–611. MR 0261826, DOI 10.1512/iumj.1968.17.17036
- Harry Pollard, Some nonlinear Tauberian theorems, Proc. Amer. Math. Soc. 18 (1967), 399–401. MR 219946, DOI 10.1090/S0002-9939-1967-0219946-3
- Harry Pollard and Donald G. Saari, Singularities of the $n$-body problem. I, Arch. Rational Mech. Anal. 30 (1968), 263–269. MR 231565, DOI 10.1007/BF00281534
- Harry Pollard and Donald G. Saari, Singularities of the $n$-body problem. II, Inequalities, II (Proc. Second Sympos., U.S. Air Force Acad., Colo., 1967) Academic Press, New York, 1970, pp. 255–259. MR 0277853
- Harry Pollard and Donald G. Saari, Escape from a gravitational system of positive energy, Celestial Mech. 1 (1969/70), 347–350. MR 261827, DOI 10.1007/BF01231139
- Harry Pollard and D. G. Saari, An elementary Tauberian theorem of nonlinear type, Proc. Amer. Math. Soc. 24 (1970), 593–594. MR 251168, DOI 10.1090/S0002-9939-1970-0251168-2
- Donald G. Saari, On oscillatory motion in the problem of three bodies, Celestial Mech. 1 (1969/70), 343–346. MR 263286, DOI 10.1007/BF01231138 —, On bounded solutions of the n-body problem, Proc. Internat. Sympos. Astronomy, Periodic Orbits, Stability and Resonances (São Paulo, Brazil), Reidel, Dordrecht, 1970, pp. 76-81.
- Donald G. Saari, Some large $O$ nonlinear Tauberian theorems, Proc. Amer. Math. Soc. 21 (1969), 459–462. MR 243234, DOI 10.1090/S0002-9939-1969-0243234-4
- Carl Ludwig Siegel, Der Dreierstoss, Ann. of Math. (2) 42 (1941), 127–168 (German). MR 3736, DOI 10.2307/1968991
- K. Sitnikov, The existence of oscillatory motions in the three-body problems, Soviet Physics Dokl. 5 (1960), 647–650. MR 0127389
- Hans J. Sperling, On the real singularities of the $N$-body problem, J. Reine Angew. Math. 245 (1970), 15–40. MR 290630, DOI 10.1515/crll.1970.245.15 K. F. Sundman, Le problème des trois corps, Acta. Soc. Sci. Fenn. 35 (1909), no. 9. D. V. Widder, The Laplace transform, Princeton Math. Series, vol. 6, Princeton Univ. Press, Princeton, N. J., 1941. MR 3, 232.
- Aurel Wintner, The Analytical Foundations of Celestial Mechanics, Princeton Mathematical Series, vol. 5, Princeton University Press, Princeton, N. J., 1941. MR 0005824
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 156 (1971), 219-240
- MSC: Primary 70.34
- DOI: https://doi.org/10.1090/S0002-9947-1971-0275729-5
- MathSciNet review: 0275729