The Brauer-Wall group of a commutative ring
HTML articles powered by AMS MathViewer
- by Charles Small
- Trans. Amer. Math. Soc. 156 (1971), 455-491
- DOI: https://doi.org/10.1090/S0002-9947-1971-0276218-4
- PDF | Request permission
Abstract:
Let k be a commutative ring (with 1). We work with k-algebras with a grading $\bmod \;2$, and with graded modules over such algebras. Using graded notions of tensor product, commutativity, and morphisms, we construct an abelian group ${\rm {BW}}(k)$ whose elements are suitable equivalence classes of Azumaya k-algebras. The consruction generalizes, and is patterned on, the definition of the Brauer group ${\rm {Br}}(k)$ given by Auslander and Goldman. ${\rm {Br}}(k)$ is in fact a subgroup of ${\rm {BW}}(k)$, and we describe the quotient as a group of graded quadratic extensions of k.References
- Maurice Auslander and Oscar Goldman, The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), 367–409. MR 121392, DOI 10.1090/S0002-9947-1960-0121392-6
- Hyman Bass, Algebraic $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0249491 —, Topics in algebraic K-theory, Lecture Notes, Tata Institute, Bombay, 1967.
- S. U. Chase, D. K. Harrison, and Alex Rosenberg, Galois theory and Galois cohomology of commutative rings, Mem. Amer. Math. Soc. 52 (1965), 15–33. MR 195922
- G. J. Janusz, Separable algebras over commutative rings, Trans. Amer. Math. Soc. 122 (1966), 461–479. MR 210699, DOI 10.1090/S0002-9947-1966-0210699-5 M. Karoubi, Fondements de la K-theorie, Facultédes Sciences de l’Université d’Alger, 1966/67. J.-P. Sérre, Applications algébriques de la cohomologie des groupes: Théorie des algèbres simples, Séminaire H. Cartan 1950/51, exposés 5-7, Secrétariat mathématique, Paris, 1955. MR 17, 1117.
- Jean-Pierre Serre, Corps locaux, Publications de l’Institut de Mathématique de l’Université de Nancago, VIII, Hermann, Paris, 1962 (French). MR 0150130
- C. T. C. Wall, Graded Brauer groups, J. Reine Angew. Math. 213 (1963/64), 187–199. MR 167498, DOI 10.1515/crll.1964.213.187
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 156 (1971), 455-491
- MSC: Primary 13.90
- DOI: https://doi.org/10.1090/S0002-9947-1971-0276218-4
- MathSciNet review: 0276218