Representations of metabelian groups realizable in the real field
HTML articles powered by AMS MathViewer
- by B. G. Basmaji
- Trans. Amer. Math. Soc. 156 (1971), 109-118
- DOI: https://doi.org/10.1090/S0002-9947-1971-0277610-4
- PDF | Request permission
Abstract:
A necessary and sufficient condition is found such that all the nonlinear irreducible representations of a metabelian group are realizable in the real field, and all such groups with cyclic commutator subgroups are determined.References
- B. G. Basmaji, Monomial representations and metabelian groups, Nagoya Math. J. 35 (1969), 99–107. MR 244394, DOI 10.1017/S0027763000013040
- Richard Brauer, Representations of finite groups, Lectures on Modern Mathematics, Vol. I, Wiley, New York, 1963, pp. 133–175. MR 0178056
- Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0144979
- Walter Feit, Characters of finite groups, W. A. Benjamin, Inc., New York-Amsterdam, 1967. MR 0219636
- Larry C. Grove, Real representations of metacyclic groups, Proc. Amer. Math. Soc. 21 (1969), 417–421. MR 236274, DOI 10.1090/S0002-9939-1969-0236274-2
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 156 (1971), 109-118
- MSC: Primary 20.40
- DOI: https://doi.org/10.1090/S0002-9947-1971-0277610-4
- MathSciNet review: 0277610