Commutators, $C^{k}$-classification, and similarity of operators
HTML articles powered by AMS MathViewer
- by Shmuel Kantorovitz
- Trans. Amer. Math. Soc. 156 (1971), 193-218
- DOI: https://doi.org/10.1090/S0002-9947-1971-0281045-8
- PDF | Request permission
Abstract:
We generalize the results of our recent paper, The ${C^k}$-classification of certain operators in ${L_p}$. II, to the abstract setting of a pair of operators satisfying the commutation relation $[M,N] = {N^2}$.References
- Nelson Dunford, Spectral operators, Pacific J. Math. 4 (1954), 321–354. MR 63563, DOI 10.2140/pjm.1954.4.321
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- S. R. Foguel, The relations between a spectral operator and its scalar part, Pacific J. Math. 8 (1958), 51–65. MR 96976, DOI 10.2140/pjm.1958.8.51
- Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, Vol. 31, American Mathematical Society, Providence, R.I., 1957. rev. ed. MR 0089373
- G. K. Kalisch, On fractional integrals of pure imaginary order in $L_{p}$, Proc. Amer. Math. Soc. 18 (1967), 136–139. MR 216310, DOI 10.1090/S0002-9939-1967-0216310-8 —, Similarity invariants of certain operators in ${L_p}$ (to appear).
- S. Kantorovitz, Operation calculus in Banach algebras for algebra-valued functions, Trans. Amer. Math. Soc. 110 (1964), 519–537. MR 159240, DOI 10.1090/S0002-9947-1964-0159240-4
- Shmuel Kantorovitz, On the characterization of spectral operators, Trans. Amer. Math. Soc. 111 (1964), 152–181. MR 160115, DOI 10.1090/S0002-9947-1964-0160115-5
- Shmuel Kantorovitz, Classification of operators by means of their operational calculus, Trans. Amer. Math. Soc. 115 (1965), 194–224. MR 199712, DOI 10.1090/S0002-9947-1965-0199712-0
- Shmuel Kantorovitz, The $C^{k}$-classification of certain operators in $L_{p}$, Trans. Amer. Math. Soc. 132 (1968), 323–333. MR 226443, DOI 10.1090/S0002-9947-1968-0226443-3 —, The ${C^k}$-classification of certain operators in ${L_p}$. II, Trans. Amer. Math. Soc. 146 (1969), 61-68.
- C. R. Putnam, Commutation properties of Hilbert space operators and related topics, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 36, Springer-Verlag New York, Inc., New York, 1967. MR 0217618, DOI 10.1007/978-3-642-85938-0
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 156 (1971), 193-218
- MSC: Primary 47.40
- DOI: https://doi.org/10.1090/S0002-9947-1971-0281045-8
- MathSciNet review: 0281045