Some immersion theorems for manifolds
HTML articles powered by AMS MathViewer
- by A. Duane Randall
- Trans. Amer. Math. Soc. 156 (1971), 45-58
- DOI: https://doi.org/10.1090/S0002-9947-1971-0286121-1
- PDF | Request permission
Abstract:
In this paper we obtain several results on immersing manifolds into Euclidean spaces. For example, a spin manifold ${M^n}$ immerses in ${R^{2n - 3}}$ for dimension $n \equiv 0\bmod 4$ and n not a power of 2. A spin manifold ${M^n}$ immerses in ${R^{2n - 4}}$ for $n \equiv 7\bmod 8$ and $n > 7$. Let ${M^n}$ be a 2-connected manifold for $n \equiv 6\bmod 8$ and $n > 6$ such that ${H_3}(M;Z)$ has no 2-torsion. Then M immerses in ${R^{2n - 5}}$ and embeds in ${R^{2n - 4}}$. The method of proof consists of expressing k-invariants in Postnikov resolutions for the stable normal bundle of a manifold by means of higher order cohomology operations. Properties of the normal bundle are used to evaluate the operations.References
- J. F. Adams, On the non-existence of elements of Hopf invariant one, Ann. of Math. (2) 72 (1960), 20β104. MR 141119, DOI 10.2307/1970147
- JosΓ© Adem, On secondary cohomology operations, Bol. Soc. Mat. Mexicana (2) 7 (1962), 95β110 (Spanish). MR 167978
- JosΓ© Adem and Samuel Gitler, Secondary characteristic classes and the immersion problem, Bol. Soc. Mat. Mexicana (2) 8 (1963), 53β78. MR 167990
- J. Adem, S. Gitler, and M. Mahowald, Embedding and immersion of projective spaces, Bol. Soc. Mat. Mexicana (2) 10 (1965), 84β88. MR 220303
- M. F. Atiyah, Thom complexes, Proc. London Math. Soc. (3) 11 (1961), 291β310. MR 131880, DOI 10.1112/plms/s3-11.1.291
- Albrecht Dold, Erzeugende der Thomschen Algebra ${\mathfrak {N}}$, Math. Z. 65 (1956), 25β35 (German). MR 79269, DOI 10.1007/BF01473868
- S. Feder, Non-immersion theorems for complex and quaternionic projective spaces, Bol. Soc. Mat. Mexicana (2) 11 (1966), 62β67. MR 232396
- S. Gitler and M. Mahowald, The geometric dimension of real stable vector bundles, Bol. Soc. Mat. Mexicana (2) 11 (1966), 85β107. MR 231367
- S. Gitler, M. Mahowald, and R. James Milgram, Secondary cohomology operations and complex vector bundles, Proc. Amer. Math. Soc. 22 (1969), 223β229. MR 243515, DOI 10.1090/S0002-9939-1969-0243515-4 H. Glover, Thesis, University of Michigan, Ann. Arbor, Mich., 1967.
- AndrΓ© Haefliger and Morris W. Hirsch, On the existence and classification of differentiable embeddings, Topology 2 (1963), 129β135. MR 149494, DOI 10.1016/0040-9383(63)90028-4
- Morris W. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc. 93 (1959), 242β276. MR 119214, DOI 10.1090/S0002-9947-1959-0119214-4
- C. S. Hoo and M. E. Mahowald, Some homotopy groups of Stiefel manifolds, Bull. Amer. Math. Soc. 71 (1965), 661β667. MR 177412, DOI 10.1090/S0002-9904-1965-11387-8
- Mark Mahowald, On obstruction theory in orientable fiber bundles, Trans. Amer. Math. Soc. 110 (1964), 315β349. MR 157386, DOI 10.1090/S0002-9947-1964-0157386-8
- Mark Mahowald, Some Whitehead products in $S^{n}$, Topology 4 (1965), 17β26. MR 178467, DOI 10.1016/0040-9383(65)90046-7
- Mark E. Mahowald and Franklin P. Peterson, Secondary cohomology operations on the Thom class, Topology 2 (1963), 367β377. MR 157378, DOI 10.1016/0040-9383(63)90016-8
- M. E. Mahowald and R. F. Williams, The stable homotopy of $K(Z,\,n)$, Bol. Soc. Mat. Mexicana (2) 11 (1966), 22β28. MR 235563
- W. S. Massey and F. P. Peterson, On the dual Stiefel-Whitney classes of a manifold, Bol. Soc. Mat. Mexicana (2) 8 (1963), 1β13. MR 163325
- W. S. Massey and F. P. Peterson, The cohomology structure of certain fibre spaces. I, Topology 4 (1965), 47β65. MR 189032, DOI 10.1016/0040-9383(65)90048-0
- G. F. Paechter, The groups $\pi _{r}(V_{n,\,m})$. I, Quart. J. Math. Oxford Ser. (2) 7 (1956), 249β268. MR 131878, DOI 10.1093/qmath/7.1.249
- A. Duane Randall, Some immersion theorems for projective spaces, Trans. Amer. Math. Soc. 147 (1970), 135β151. MR 253357, DOI 10.1090/S0002-9947-1970-0253357-4
- B. J. Sanderson and R. L. E. Schwarzenberger, Non-immersion theorems for differentiable manifolds, Proc. Cambridge Philos. Soc. 59 (1963), 319β322. MR 148080, DOI 10.1017/s0305004100036938
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112
- Emery Thomas, Seminar on fiber spaces, Lecture Notes in Mathematics, vol. 13, Springer-Verlag, Berlin-New York, 1966. Lectures delivered in 1964 in Berkeley and 1965 in ZΓΌrich; Berkeley notes by J. F. McClendon. MR 0203733, DOI 10.1007/BFb0097864
- Emery Thomas, Postnikov invariants and higher order cohomology operations, Ann. of Math. (2) 85 (1967), 184β217. MR 210135, DOI 10.2307/1970439
- Emery Thomas, Real and complex vector fields on manifolds, J. Math. Mech. 16 (1967), 1183β1205. MR 0210136
- Emery Thomas, The index of a tangent $2$-field, Comment. Math. Helv. 42 (1967), 86β110. MR 215317, DOI 10.1007/BF02564413
- Emery Thomas, The span of a manifold, Quart. J. Math. Oxford Ser. (2) 19 (1968), 225β244. MR 234487, DOI 10.1093/qmath/19.1.225
- Emery Thomas, On the existence of immersions and submersions, Trans. Amer. Math. Soc. 132 (1968), 387β394. MR 225332, DOI 10.1090/S0002-9947-1968-0225332-8
- Emery Thomas, An exact sequence for principal fibrations, Bol. Soc. Mat. Mexicana (2) 12 (1967), 35β45. MR 243526
- Emery Thomas, Vector fields on low dimensional manifolds, Math. Z. 103 (1968), 85β93. MR 224109, DOI 10.1007/BF01110620
- J. J. Ucci, Immersions and embeddings of Dold manifolds, Topology 4 (1965), 283β293. MR 187250, DOI 10.1016/0040-9383(65)90012-1
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 156 (1971), 45-58
- MSC: Primary 57.20
- DOI: https://doi.org/10.1090/S0002-9947-1971-0286121-1
- MathSciNet review: 0286121