Stochastic equations with discontinuous drift
HTML articles powered by AMS MathViewer
- by Edward D. Conway
- Trans. Amer. Math. Soc. 157 (1971), 235-245
- DOI: https://doi.org/10.1090/S0002-9947-1971-0275532-6
- PDF | Request permission
Abstract:
We study stochastic differential equations, $dx = adt + \sigma d\beta$ where $\beta$ denotes a Brownian motion. By relaxing the definition of solutions we are able to prove existence theorems assuming only that $a$ is measurable, $\sigma$ is continuous and that both grow linearly at infinity. Nondegeneracy is not assumed. The relaxed definition of solution is an extension of A. F. Filippov’s definition in the deterministic case. When $\sigma$ is constant we prove one-sided uniqueness and approximation theorems under the assumption that $a$ satisfies a one-sided Lipschitz condition.References
- A. V. Skorohod, Issledovaniya po teorii sluchaĭ nykh protsessov (Stokhasticheskie differentsial′nye uravneniya i predel′nye teoremy dlya protsessov Markova), Izdat. Kiev. Univ., Kiev, 1961 (Russian). MR 0185619
- A. F. Filippov, Differential equations with discontinuous right-hand side, Mat. Sb. (N.S.) 51 (93) (1960), 99–128 (Russian). MR 0114016
- Kiyoshi Itô and Henry P. McKean Jr., Diffusion processes and their sample paths, Die Grundlehren der mathematischen Wissenschaften, Band 125, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-New York, 1965. MR 0199891
- Kôsaku Yosida, Functional analysis, Die Grundlehren der mathematischen Wissenschaften, Band 123, Academic Press, Inc., New York; Springer-Verlag, Berlin, 1965. MR 0180824
- Patrick Billingsley, Convergence of probability measures, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0233396 Ju. V. Prohorov, Convergence of random processes and limit theorems, Teor. Verojatnost. i Primenen. 1 (1956), 157-214.
- A. V. Skorohod, Limit theorems for stochastic processes, Teor. Veroyatnost. i Primenen. 1 (1956), 289–319 (Russian, with English summary). MR 0084897
- Philip Hartman, Ordinary differential equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964. MR 0171038
- Daniel W. Stroock and S. R. S. Varadhan, Diffusion processes with continuous coefficients. I, Comm. Pure Appl. Math. 22 (1969), 345–400. MR 253426, DOI 10.1002/cpa.3160220304
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 157 (1971), 235-245
- MSC: Primary 60.75
- DOI: https://doi.org/10.1090/S0002-9947-1971-0275532-6
- MathSciNet review: 0275532