Euclidean $(q+r)$-space modulo an $r$-plane of collapsible $p$-complexes
HTML articles powered by AMS MathViewer
- by Leslie C. Glaser
- Trans. Amer. Math. Soc. 157 (1971), 261-278
- DOI: https://doi.org/10.1090/S0002-9947-1971-0276943-5
- PDF | Request permission
Abstract:
The following general decomposition result is obtained: Suppose ${K^p}(p \geqq 1)$ is a finite collapsible $p$-complex topologically embedded as a subset of a separable metric space ${X^q}$ where, for some $r \geqq 1,{X^q} \times {E^r}$ is homeomorphic to Euclidean $(q + r)$-space ${E^{q + r}}$. Then the Cartesian product of the quotient space ${X^q}/{K^p}$ with ${E^r}$ is topologically ${E^{q + r}}$ provided that $q \geqq 3$ and, for each simplex ${\Delta ^k} \in {K^p},({X^q} \times {E^r},{\Delta ^k} \times ({[0,1]^{r - 1}} \times 0))$ is homeomorphic, as pairs, to \[ ({E^{q + r}},{[0,1]^{k + r - 1}} \times (0, \ldots ,0)).\] It is known that this condition is satisfied if $q - p \geqq 2$ and $q + r \geqq 5$. This result implies that if ${K^k}$ is a finite collapsible $k$-complex topologically embedded as a subset of Euclidean $n$-space ${E^n}$, then the Cartesian product of the quotient space ${E^n}/{K^k}$ with ${E^1}$ is topologically ${E^{n + 1}}$ provided either (i) $n \leqq 3$, (ii) $n - k \geqq 2$, or (iii) each simplex of ${K^k}$ is flat in ${E^{n + 1}}$.References
- J. J. Andrews and M. L. Curtis, $n$-space modulo an arc, Ann. of Math. (2) 75 (1962), 1โ7. MR 139153, DOI 10.2307/1970414
- R. H. Bing, The cartesian product of a certain nonmanifold and a line is $E^{4}$, Ann. of Math. (2) 70 (1959), 399โ412. MR 107228, DOI 10.2307/1970322
- John L. Bryant, Euclidean space modulo a cell, Fund. Math. 63 (1968), 43โ51. MR 230298, DOI 10.4064/fm-63-1-43-51 โ, Euclidean $n$-space modulo an $(n - 1)$-cell (to appear).
- J. L. Bryant and C. L. Seebeck III, Locally nice embeddings of polyhedra, Quart. J. Math. Oxford Ser. (2) 19 (1968), 257โ274. MR 234434, DOI 10.1093/qmath/19.1.257
- J. L. Bryant and C. L. Seebeck III, Locally nice embeddings in codimension three, Bull. Amer. Math. Soc. 74 (1968), 378โ380. MR 221514, DOI 10.1090/S0002-9904-1968-11960-3
- A. V. ฤernavskiฤญ, Locally homotopically unknotted embeddings of manifolds, Dokl. Akad. Nauk SSSR 181 (1968), 290โ293 (Russian). MR 0232395
- A. V. ฤernavskiฤญ, Topological embeddings of manifolds, Dokl. Akad. Nauk SSSR 187 (1969), 1247โ1250 (Russian). MR 0259918 L. C. Glaser, An elementary decomposition proof that the double suspension of a homotopy $3$-cell is a topological $5$-cell, Illinios J. Math. (to appear). โ, On suspensions of homology spheres, Proc 1970 NUFFIC International Summer School on Manifolds (to appear).
- David S. Gillman, Unknotting $2$-manifolds in $3$-hyperplanes of $E^{4}$, Duke Math. J. 33 (1966), 229โ245. MR 189014 T. Homma, Piecewise linear approximations of embeddings of manifolds, Florida State University, Tallahassee, Fla., 1965 (mimeographed notes).
- Witold Hurewicz and Henry Wallman, Dimension Theory, Princeton Mathematical Series, vol. 4, Princeton University Press, Princeton, N. J., 1941. MR 0006493
- V. L. Klee Jr., Some topological properties of convex sets, Trans. Amer. Math. Soc. 78 (1955), 30โ45. MR 69388, DOI 10.1090/S0002-9947-1955-0069388-5
- C. Lacher, Locally flat strings and half-strings, Proc. Amer. Math. Soc. 18 (1967), 299โ304. MR 212805, DOI 10.1090/S0002-9939-1967-0212805-1 Richard T. Miller, Approximating codimension-$3$ embeddings, Notices Amer. Math. Soc. 17 (1970), 470. Abstract #70 T-G47.
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 157 (1971), 261-278
- MSC: Primary 54.78
- DOI: https://doi.org/10.1090/S0002-9947-1971-0276943-5
- MathSciNet review: 0276943