The convergence with vanishing viscosity of nonstationary Navier-Stokes flow to ideal flow in $R_{3}$
HTML articles powered by AMS MathViewer
- by H. S. G. Swann
- Trans. Amer. Math. Soc. 157 (1971), 373-397
- DOI: https://doi.org/10.1090/S0002-9947-1971-0277929-7
- PDF | Request permission
Abstract:
It is shown here that a unique solution to the Navier-Stokes equations exists in ${R_3}$ for a small time interval independent of the viscosity and that the solutions for varying viscosities converge uniformly to a function that is a solution to the equations for ideal flow in ${R_3}$. The existence of the solutions is shown by transforming the Navier-Stokes equations to an equivalent system solvable by applying fixed point methods with estimates derived from using semigroup theory.References
- O. A. Ladyženskaja, Mathematical problems in the dynamics of a viscous incompressible fluid, Fizmatgiz, Moscow, 1961; English transl., Gordon and Breach, New York, 1963. MR 27 #5034a,b.
R. Courant, Methods of mathematical physics. Vol. II: Partial differential equations, Interscience, New York, 1962. MR 25 #4216.
- Tosio Kato and Hiroshi Fujita, On the nonstationary Navier-Stokes system, Rend. Sem. Mat. Univ. Padova 32 (1962), 243–260. MR 142928
- Hiroshi Fujita and Tosio Kato, On the Navier-Stokes initial value problem. I, Arch. Rational Mech. Anal. 16 (1964), 269–315. MR 166499, DOI 10.1007/BF00276188
- K. K. Golovkin, Vanishing viscosity in the Cauchy problem for equations of hydrodynamics, Trudy Mat. Inst. Steklov. 92 (1966), 31–49 (Russian). MR 0207281
- Eberhard Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachr. 4 (1951), 213–231 (German). MR 50423, DOI 10.1002/mana.3210040121
- V. I. Judovič, Non-stationary flows of an ideal incompressible fluid, Ž. Vyčisl. Mat i Mat. Fiz. 3 (1963), 1032–1066 (Russian). MR 158189
- Jean Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math. 63 (1934), no. 1, 193–248 (French). MR 1555394, DOI 10.1007/BF02547354
- Leon Lichtenstein, Grundlagen der Hydromechanik, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Band 30, Springer-Verlag, Berlin, 1968 (German). MR 0228225
- F. J. McGrath, Nonstationary plane flow of viscous and ideal fluids, Arch. Rational Mech. Anal. 27 (1967), 329–348. MR 221818, DOI 10.1007/BF00251436 C. W. Oseen, Neuere Methoden und Ergebnisse in der Hydrodynamik, Akademie Verlag, Leipzig, 1927.
- Kôsaku Yosida, Functional analysis, Die Grundlehren der mathematischen Wissenschaften, Band 123, Academic Press, Inc., New York; Springer-Verlag, Berlin, 1965. MR 0180824
- Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473
- Lipman Bers, Fritz John, and Martin Schechter, Partial differential equations, Lectures in Applied Mathematics, vol. 3, American Mathematical Society, Providence, R.I., 1979. With supplements by Lars Gȧrding and A. N. Milgram; With a preface by A. S. Householder; Reprint of the 1964 original. MR 598466
- David G. Ebin and Jerrold E. Marsden, Groups of diffeomorphisms and the solution of the classical Euler equations for a perfect fluid, Bull. Amer. Math. Soc. 75 (1969), 962–967. MR 246328, DOI 10.1090/S0002-9904-1969-12315-3 J. E. Marsden, Non-linear semi-groups associated with the equations for a non-homogeneous fluid, University of California, Berkeley, Calif., 1970 (unpublished).
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 157 (1971), 373-397
- MSC: Primary 35.79; Secondary 76.00
- DOI: https://doi.org/10.1090/S0002-9947-1971-0277929-7
- MathSciNet review: 0277929