On mean-periodicity. II
HTML articles powered by AMS MathViewer
- by Edwin J. Akutowicz
- Trans. Amer. Math. Soc. 157 (1971), 449-457
- DOI: https://doi.org/10.1090/S0002-9947-1971-0284765-4
- PDF | Request permission
Abstract:
This paper is devoted to the problem of representing all solutions of certain homogeneous convolution equations through series of exponential polynomials. This representation is sought in the dual space $\mathcal {M}’$ of a function space $\mathcal {M}$, the latter consisting of entire functions satisfying growth conditions in horizontal directions. The space $\mathcal {M}$ is a Fréchet space, which fact permits a simpler and more thorough treatment than that given in the paper [1]. The technique used here is based upon a method developed by L. Ehrenpreis [5] and V. P. Palamodov [3] in the theory of differential equations with constant coefficients. We map the Fourier transform space $\mathcal {F}\mathcal {M}$ into a space of sequences, \[ \rho :\mathcal {F}\mathcal {M} \backepsilon F \to (F({\lambda _1}),F’({\lambda _1}), \ldots ,{F^{({p_1} - 1)}}({\lambda _1}),F({\lambda _2}), \ldots ,{F^{({p_2} - 1)}}({\lambda _2}), \ldots ),\] where $\{ {\lambda _k}\}$ is the spectrum with multiplicity of a mean-periodic element of the dual space $\mathcal {M}’$. The crucial point is to identify the quotient space $\mathcal {F}\mathcal {M}/\ker \rho$.References
- Edwin J. Akutowicz, Sur la moyenne-périodicité. I, J. Math. Pures Appl. (9) 48 (1969), 307–344 (French). MR 256155
- Gottfried Köthe, Dualität in der Funktionentheorie, J. Reine Angew. Math. 191 (1953), 30–49 (German). MR 56824, DOI 10.1515/crll.1953.191.30
- V. P. Palamodov, Lineĭnye differentsial′nye operatory s postoyaannymi koèffitsientami, Izdat. “Nauka”, Moscow, 1967 (Russian). MR 0243193
- Kôsaku Yosida, Functional analysis, Die Grundlehren der mathematischen Wissenschaften, Band 123, Academic Press, Inc., New York; Springer-Verlag, Berlin, 1965. MR 0180824
- Leon Ehrenpreis, Fourier analysis in several complex variables, Pure and Applied Mathematics, Vol. XVII, Wiley-Interscience [A division of John Wiley & Sons, Inc.], New York-London-Sydney, 1970. MR 0285849
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 157 (1971), 449-457
- MSC: Primary 42.30
- DOI: https://doi.org/10.1090/S0002-9947-1971-0284765-4
- MathSciNet review: 0284765