A priori estimates and unique continuation theorems for second order parabolic equations
HTML articles powered by AMS MathViewer
- by Raymond Johnson
- Trans. Amer. Math. Soc. 158 (1971), 167-177
- DOI: https://doi.org/10.1090/S0002-9947-1971-0277897-8
- PDF | Request permission
Abstract:
It is shown that solutions of second-order linear parabolic equations subject to global constraint satisfy an a priori estimate which has among its consequences that if a solution of such an equation vanishes on the characteristic $t = T$ and satisfies the global constraint, it vanishes identically.References
- S. Agmon and L. Nirenberg, Properties of solutions of ordinary differential equations in Banach space, Comm. Pure Appl. Math. 16 (1963), 121–239. MR 155203, DOI 10.1002/cpa.3160160204
- S. Agmon and L. Nirenberg, Lower bounds and uniqueness theorems for solutions of differential equations in a Hilbert space, Comm. Pure Appl. Math. 20 (1967), 207–229. MR 204829, DOI 10.1002/cpa.3160200106
- J. R. Cannon and Jim Douglas Jr., The approximation of harmonic and parabolic functions on half-spaces from interior data, Numerical Analysis of Partial Differential Equations (C.I.M.E. 2 Ciclo, Ispra, 1967) Edizioni Cremonese, Rome, 1968, pp. 193–230. MR 0243755
- Avner Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0181836
- R. Ja. Glagoleva, Some properties of the solutions of a second order linear parabolic equation, Mat. Sb. (N.S.) 74 (116) (1967), 47–74 (Russian). MR 0216168
- Ronald Guenther, Representation theorems for linear second-order parabolic partial differential equations, J. Math. Anal. Appl. 17 (1967), 488–501. MR 208167, DOI 10.1016/0022-247X(67)90136-9
- A. M. Il′in, A. S. Kalašnikov, and O. A. Oleĭnik, Second-order linear equations of parabolic type, Uspehi Mat. Nauk 17 (1962), no. 3 (105), 3–146 (Russian). MR 0138888
- Seizô Itô and Hidehiko Yamabe, A unique continuation theorem for solutions of a parabolic differential equation, J. Math. Soc. Japan 10 (1958), 314–321. MR 99519, DOI 10.2969/jmsj/01030314
- B. Frank Jones Jr., Lipschitz spaces and the heat equation, J. Math. Mech. 18 (1968/69), 379–409. MR 0511929, DOI 10.1512/iumj.1969.18.18030
- M. Krzyżański, Sur les solutions non négatives de l’équation linéaire normale parabolique, Rev. Roumaine Math. Pures Appl. 9 (1964), 393–408 (French). MR 182813
- E. M. Landis, Some questions in the qualitative theory of second-order elliptic equations (case of several independent variables), Uspehi Mat. Nauk 18 (1963), no. 1 (109), 3–62 (Russian). MR 0150437
- Sigeru Mizohata, Le problème de Cauchy pour le passé pour quelques équations paraboliques, Proc. Japan Acad. 34 (1958), 693–696 (French). MR 105554
- D. V. Widder, Positive temperatures on an infinite rod, Trans. Amer. Math. Soc. 55 (1944), 85–95. MR 9795, DOI 10.1090/S0002-9947-1944-0009795-2
- Kôsaku Yosida, An abstract analyticity in time for solutions of a diffusion equation, Proc. Japan Acad. 35 (1959), 109–113. MR 105559
- Raymond Johnson, Representation theorems and Fatou theorems for second-order linear parabolic partial differential equations, Proc. London Math. Soc. (3) 23 (1971), 325–347. MR 289949, DOI 10.1112/plms/s3-23.2.325 —, A priori estimates and unique continuation theorems for second-order parabolic equations, TR 70-160, University of Maryland, College Park, Md., 1970.
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 158 (1971), 167-177
- MSC: Primary 35.62
- DOI: https://doi.org/10.1090/S0002-9947-1971-0277897-8
- MathSciNet review: 0277897