ON THE CLASSIFICATION OF SYMMETRIC GRAPHS
WITH A PRIME NUMBER OF VERTICES

BY

CHONG-YUN CHAO

Abstract. We determine all the symmetric graphs with a prime number of vertices. We also determine the structure of their groups.

1. Introduction. A symmetric graph is an undirected graph whose group of automorphisms is transitive on its vertices as well as on its edges. Here, we determine all the symmetric graphs with a prime number \(p \) of vertices, i.e., we show that besides the null and complete graphs, for each integer \(n \) such that \(0 < n < p - 1 \), there exists a symmetric graph with \(p \) vertices and degree \(n \) if and only if \(n \) is even and \(n \) divides \(p - 1 \). Also, if the symmetric graphs with \(p \) vertices and degree \(n \) exist, they all are isomorphic. For each given \(p \), we can construct all the symmetric graphs with \(p \) vertices. The method of construction which we use here is similar to the one in [2], i.e., we use the properties of a Cayley graph of a cyclic group of order \(p \). Our classification depends heavily on a result in [1, Theorem 5, p. 494], i.e., the group of automorphisms of a symmetric graph (nonnull and noncomplete) with \(p \) vertices is a Frobenius group. In fact, here we can determine the generators and the defining relations of this Frobenius group. Our classification also confirms a conjecture in [4, p. 144].

2. Definitions and notations. The definitions concerning groups used here are the same as in [3]. Since the definitions concerning graphs are less standard, we state them as follows: The graphs which we consider here are finite, simple, loopless and undirected, i.e., by a graph \(X \) we mean a finite set \(V(X) \), called the vertices of \(X \), together with a set \(E(X) \), called the edges of \(X \), consisting of unordered pairs \([a, b]\) of distinct elements \(a, b \in V(X) \). We also assume that there is at most one edge between two vertices. Two graphs \(X \) and \(Y \) are said to be isomorphic, denoted by \(X \cong Y \), if there is a one-to-one map \(\sigma \) of \(V(X) \) onto \(V(Y) \) such that \([a_0, b_0] \in E(Y) \) if and only if \([a, b] \in E(X) \). An isomorphism of \(X \) onto itself is said to be an automorphism of \(X \). For each given graph \(X \) there is a group of all automorphisms, denoted by \(G(X) \), where the multiplication is the multiplication of permutations. \(X \) is said to be vertex-transitive if \(G(X) \) is transitive on \(V(X) \). \(X \) is said to be edge-transitive if \(G(X) \) is transitive on \(E(X) \). \(X \) is said to be symmetric...
if it is both vertex-transitive and edge-transitive. The complete graph (consisting of all possible edges) and the null graph (having \(E(X) \) empty) of \(n \) vertices have \(S_n \), the symmetric group of \(n \) letters, as their group of automorphisms. Since \(S_n, n > 1 \), is doubly transitive, the null graph and the complete graph are symmetric. A symmetric graph is said to be nontrivial if it is neither null nor complete. (When we are only interested in vertex-transitive graphs, it makes no difference whether the graphs are loopless or not.) Let \(H \) be an additive abstract finite group and \(K \) be a subset of \(H \) such that \(K \) does not contain the identity of \(H \). The Cayley graph of \(H \) with respect to \(K \) is \(X_{H,K} \) with \(V(X_{H,K}) = H \) and \(E(X_{H,K}) = \{ [h, h+k]; h \in H, k \in K \} \). If \(K \) is the empty set, then \(E(X_{H,K}) \) is meant to be empty, i.e., \(X_{H,K} \) is a null graph. Clearly, the left regular representations of \(H \) are contained in \(G(X_{H,K}) \) for any subset \(K \) (not containing the identity of \(H \)) in \(H \). A graph \(X \) is said to be regular if the number of edges incident with each vertex is the same, or \(X \) is said to be to be of degree \(m \) if the number of edges incident with each vertex is \(m \). The Cayley graphs are regular. A cycle of length \(n \) (\(> 2 \)) is a collection of \(n \) edges \([X_1, X_2], [X_2, X_3], \ldots, [X_n, X_1] \) where \(X_1, X_2, \ldots, X_n \) are distinct. We, sometimes, indicate a cycle of length \(n \) by \(X_1-X_2-X_3-\cdots-X_n-X_1 \). In [1, p. 493] Theorem 4 states the following:

Let \(p \) be a prime, and \(G \) be the cyclic group generated by \((12\ldots p)\). Then Schur’s algorithm on \(G \) gives all the graphs of \(p \) vertices each whose group of automorphisms is transitive.

This theorem implies that if \(X \) is a vertex-transitive graph with \(p \) vertices, then \(X \) is a regular graph with cycles of length \(p \) combined together. This is due to the fact that when each basis for the centralizer ring \(V(G) \) corresponding to \(G \) is a symmetric matrix, it is the adjacency matrix of a cycle of length \(p \). (See pp. 492–493 in [1].) Let \(D_p \) be the dihedral group of order \(2p \) generated by

\[
R = (012\ldots(p-1)) \quad \text{and} \quad D = (0)(1-1)(2-2)\ldots((p-1)/2-0-1)/2-(p-1)/2
\]

where the negative signs are taken modulo \(p \). Then Schur’s algorithm on \(G \) generated by \(R \) and on \(D_p \) give the same graphs. Hence, we have

Proposition 1. Let \(p \) be a prime and \(X \) be a vertex-transitive graph with \(p \) vertices. Then

(a) \(G(X) \) contains the dihedral group \(D_p \), and

(b) the order of \(G(X) \) is even.

We shall repeatedly use Theorem 5 in [1, p. 494] which states the following:

Let \(X \) be a nontrivial vertex-transitive graph with a prime number \(p \) vertices. Then (a) \(G(X) \) is solvable; (b) \(G(X) \) is a Frobenius group; (c) \(G(X) \) is \(3/2 \)-fold transitive.

We shall show that if \(X \) is a nontrivial symmetric graph with \(p \) vertices then this Frobenius group \(G(X) \) is metacyclic.
3. The construction. Our construction here is similar to the one used in [2].

Lemma 1. Let \(p \) be a prime and \(n \) be a positive integer such that \(n \) is even and \(n \) divides \(p-1 \). Then there exists a symmetric graph with \(p \) vertices and degree \(n \).

Proof. Let \(H = \{0, 1, 2, \ldots, p-1\} \) be the group of integers modulo \(p \), and \(A(H) \) be the group of automorphisms of \(H \). Then we know that \(A(H) \) is a cyclic group of order \(p-1 \). Say, \(A(H) \) is generated by \(\sigma \), i.e., \(A(H) = \{\sigma, \sigma^2, \ldots, \sigma^{p-2}, \sigma^{p-1} = e\} \).

Since \(n \) divides \(p-1 \), we have \(p-1 = nr \) for some positive integer \(r \). Let \(\tau = \sigma^r \) and

\[
K = \{1\tau, 1\tau^2, \ldots, 1\tau^{n-1}, 1\tau^n = 1\}.
\]

We claim that if one of the elements in \(K \) has its inverse in \(K \) (the operation is taken modulo \(p \)), then every element in \(K \) has its inverse in \(K \). Say, \(-(1\tau^i) \in K \) for some \(i, 1 \leq i \leq n \). Then, for any \(t, 1 \leq t \leq n \), \(-(1\tau^i)\tau^{-t} = -(1\tau^i) \in K \) since \(K\tau = K \). We claim that \(-1 \in K \). Since \(n \) is even, \((1\tau^n)^2 = 1 \). If \(1\tau^n = j \), then \(1 = (j)^2 = j^2 \).

This means \(p \) divides \(j^2 - 1 \). Since \(p \) is a prime and \(r \) is of order \(n, j = -1 \). It follows that every element in \(K \) has its inverse in \(K \). We form the Cayley graph, \(X_{H,K} \), of \(H \) with respect to \(K \). Then since the cardinality of \(K \) is \(n \) and every element in \(K \) has its inverse in \(K \), \(X_{H,K} \) is a regular graph of degree \(n \).

Now we claim that \(X_{H,K} \) is a symmetric graph. Since \(H \) is abelian and the left regular representation of \(H \) is contained in \(G(X_{H,K}) \), the right regular representations (say, generated by \(R \)) belong to \(G(X_{H,K}) \). Consequently, \(X_{H,K} \) is vertex-transitive. Let \(E \) be an arbitrary edge in \(X_{H,K} \), then \(E = [i, i+1\tau^j] \) for some \(i \) and some \(1\tau^j \in K \), and \([0, 1]\tau^jR = E \). Since \([0, 1] \in E(X) \), it follows that for any two edges in \(E(X_{H,K}) \), there exists an element in \(G(X_{H,K}) \) which takes one to the other, i.e., \(X_{H,K} \) is edge-transitive, and it is symmetric.

Let \(\langle \tau \rangle \) be the group generated by \(\tau = \sigma^r \). We know that the order of \(\langle \tau \rangle \) is \(n \). Two elements, \(i \) and \(j \) in \(H \), are said to be related with respect to \(\langle \tau \rangle \) if and only if there is a \(\tau^k \in \langle \tau \rangle \) such that \(i\tau^k = j \). Since \(\langle \tau \rangle \) is a group, this relation is an equivalence relation. Consequently, \(H \) is partitioned into disjoint subsets

\[
K = K_1 = \{1\tau, 1\tau^2, \ldots, 1\tau^{n-1}, 1\tau^n = 1\},
\]

\[
K_2 = \{(1\sigma)\tau, (1\sigma)\tau^2, \ldots, (1\sigma)\tau^n = 1\sigma\},
\]

\[
\vdots
\]

\[
K_r = \{(1\sigma^{r-1})\tau, (1\sigma^{r-1})\tau^2, \ldots, (1\sigma^{r-1})\tau^n = 1\sigma^{r-1}\}.
\]

The Cayley graphs \(X_{H,K}, X_{H,K_2}, \ldots, X_{H,K_r} \), are symmetric, and they are pairwise isomorphic since \(\sigma^{r-1} \) maps \(X_{H,K} \) onto \(X_{H,K_i} \) isomorphically for \(i = 2, 3, \ldots, r \). Hence, we have

Lemma 2. Let \(n, p, H, \sigma \) and \(\tau \) be the same as in Lemma 1, and \(K, K_2, \ldots, K_r \) be (1). Then \(X_{H,K}, X_{H,K_2}, \ldots, X_{H,K_r} \) are symmetric and are pairwise isomorphic.
Lemma 3. The Cayley graphs $X_{H,K_1}, X_{H,K_2}, \ldots, X_{H,K_r}$ constructed in Lemma 2 are independent of the generators of $A(H)$.

Proof. $A(H) = \{e, \sigma, \sigma^2, \ldots, \sigma^{p-1} = e\}$ is generated by σ, i.e., 1σ is a primitive root modulo p. Let $\mu = \sigma^i$ be another generator of $A(H)$, then i and $p-1$ are relatively prime, denoted by $(i, p-1) = 1$. Since $p-1 = nr$, we have $(i, n) = 1$. Let

$$K'_j = \{((1\sigma^i)^{\mu}, (1\sigma^i)^{\mu^2}, \ldots, (1\sigma^i)^{\mu^n} = 1\sigma^i)$$

for $j = 0, 1, \ldots, r-1$. Since $(i, n) = 1$, the elements in each of K'_j are distinct. Also, since $(i, n) = 1$, $K'_j = K_j$ for $j = 1, 2, \ldots, r$.

4. The classification.

Lemma 4. Let X be a symmetric graph with a prime number p of vertices, and $[0, i]$ and $[0, j] \in E(X)$. Then there exists a $\theta \in (G(X))_0$ such that $i \theta = j$ where $(G(X))_0$ is the subgroup $\{\tau \in G(X) ; 0 \tau = 0\}$.

Proof. Since X is edge-transitive, there exists $\sigma \in G(X)$ such that $[0, i] \sigma = [0, j]$. If $0 \sigma = 0$ and $i \sigma = j$, then there is nothing to prove. Consider the case $0 \sigma = j$ and $i \sigma = 0$. Since X is vertex-transitive, X is a regular graph with cycles of length p combined together. Then $[0, j]$ is on the cycle of length p

$$0 \rightarrow j \rightarrow 2j \rightarrow \cdots \rightarrow (-1)j \rightarrow 0.$$

Let $\theta = R^{-i} D$. Then clearly, $\theta \in G(X)$,

$$0 \theta = 0(R^{-i} D) = j(R^{-i} D) = 0,$$

and

$$i \theta = i(R^{-i} D) = 0(R^{-i} D) = (-j)D = j.$$

Lemma 5. Let X be a nontrivial symmetric graph with a prime number p of vertices denoted by $H = \{0, 1, 2, \ldots, p-1\}$, and H be regarded as the group of integers modulo p. If $\sigma \in G(X)$ and $0 \sigma = 0$, then σ belongs to the group of automorphisms, $A(H)$, of the group H, i.e., $(G(X))_0 \subseteq A(H)$.

Proof. Since X is a vertex-transitive graph with p vertices, X is a regular graph with cycles of length p combined together. There is no loss of generality to assume that X contains the cycle $C_1: 0 \rightarrow 1 \rightarrow 2 \rightarrow \cdots \rightarrow (p-1) \rightarrow 0$. That is, if X does not contain the cycle C_1, then we may relabel the vertices so that it contains C_1 with 0 remaining unchanged. In other words, if X does not contain C_1, there is an isomorphic map which takes X onto a symmetric graph with p vertices containing C_1 and 0 is left fixed under the map.

Let $\sigma \in G(X)$ such that $0 \sigma = 0$. We want to show $\sigma \in A(H)$. $\sigma \in G(X)$ implies that it is a one-to-one map of the set H onto itself. We only need to show that it is a homomorphism of the group H onto itself, i.e., to show

$$\sigma = \begin{pmatrix} 0 & 1 & 2 & \cdots & i & \cdots & -1 \\ 0 & j & 2j & \cdots & ij & \cdots & (-1)j \end{pmatrix}.$$
Suppose not, then we may assume
\[0\sigma = 0, \quad i\sigma = ij, \text{ for } i = 1, 2, \ldots, k; \quad 1 \leq k \leq p-2, \]
\[(k+1)\sigma \neq (k+1)j. \]

Say, \((k+1)\sigma = kj + m\) where \(m \neq j\). \(X\) contains \(C_i\) implying \([k, k+1] \in E(X)\).
\(\sigma \in G(X)\) implies \([k\sigma, (k+1)\sigma] = [kj, kj+m] \in E(X)\). That means \([0, m] \in E(X)\).
By Lemma 4, there exists a \(\tau \in (G(X))_0\) such that \(1\tau = m\). Then \(\tau^{-1}R^k\sigma R^{-kj} \in (G(X))_0\) and \(m(\tau^{-1}R^k\sigma R^{-kj}) = m\). If \(\tau^{-1}R^k\sigma R^{-kj}\) is not the identity \(e\), then we have a contradiction since \(G(X)\) is a Frobenius group by Theorem 5 in \([1]\). So, we assume \(\tau^{-1}R^k\sigma R^{-kj} = e\). Then
\[(-1)\tau = (-1)R^k\sigma R^{-kj} = (k-1)\sigma R^{-kj} = -j. \]
We claim \((-1)\sigma = -m\). Consider \(D\tau D\) where
\[
D = \begin{pmatrix}
0 & 1 & 2 & \cdots & i & \cdots & -i & \cdots & -1 \\
0 & -1 & -2 & \cdots & -i & \cdots & i & \cdots & 1
\end{pmatrix}.
\]
Then we have \(0(D\tau D) = 0\) and
\[1(D\tau D) = (-1)(\tau D) = (-j)D = j. \]
Then either \((D\tau D)\sigma^{-1}\) is \(e\), or it contradicts \(G(X)\) being a Frobenius group. Hence, we assume \(D\tau D = \sigma\). Then
\[(-1)\sigma = (-1)(D\tau D) = 1(\tau D) = mD = -m. \]
Now we have
\[
\sigma = \begin{pmatrix}
0 & 1 & \cdots & -1 \\
0 & j & \cdots & -m
\end{pmatrix}, \quad \text{and} \quad \tau = \begin{pmatrix}
0 & 1 & \cdots & -1 \\
0 & m & \cdots & -j
\end{pmatrix}.
\]
Then
\[m(\tau^{-1}\sigma R^{m-j}) = 1(\sigma R^{m-j}) = jR^{m-j} = m, \]
\[(-j)(\tau^{-1}\sigma R^{m-j}) = (-1)(\sigma R^{m-j}) = (-m)R^{m-j} = -j, \]
and
\[0(\tau^{-1}\sigma R^{m-j}) = 0R^{m-j} = m-j. \]
Since \(m \neq j\), \(0(\tau^{-1}\sigma R^{m-j}) \neq 0\). Hence, \(\tau^{-1}\sigma R^{m-j}\) is not the identity and it leaves \(m\) and \(-j\) pointwise fixed. That contradicts \(G(X)\) being a Frobenius group, and \(\sigma \in A(H)\).

Theorem 1. Let \(p\) be a prime and \(n\) be an integer such that \(0 < n < p-1\). Then there exists a nontrivial symmetric graph with \(p\) vertices and degree \(n\) if and only if \(n\) is even and \(n\) divides \(p-1\).

Proof. If \(n\) is even and \(n\) divides \(p-1\), then, by Lemma 1, there exists such a graph. Conversely, if a symmetric graph \(X\) with \(p\) vertices and degree \(n\) exists, then \(n\) cannot be an odd integer since a vertex-transitive graph is regular and a regular graph with an odd number of vertices cannot have an odd number degree. If
$p = 2$ and $n = 1$, then the graph is complete and it is a trivially symmetric graph. We claim that n divides $p - 1$. Let $[0, i]$ and $[0, j]$ be any two edges in $E(X)$, then, by Lemma 4, i and j belong to the same orbit (set of transitivity), denoted by U, of $(G(X))_0$. If $[0, k]$ is a non-edge in X, then $k \notin U$ since each element in $G(X)$ takes an edge to an edge and a non-edge to a non-edge. Hence, the length of U is n. Since by Theorem 5 in [1], $G(X)$ is $3/2$-fold transitive, the orbits of $(G(X))_0$ have the same length. It follows that n divides $p - 1$.

Theorem 2. Let p be a prime and n be an even integer such that $0 < n < p - 1$ and n divides $p - 1$. Then any two symmetric graphs with p vertices and degree n are isomorphic.

Proof. Let X be a symmetric graph with p vertices and degree n. Then X is a regular graph with cycles of length p combined together. We label the vertices of X by $0, 1, \ldots, p - 1$, and we regard $\{0, 1, \ldots, p - 1\} = H$ as the group of integers modulo p. By Lemma 5, $(G(X))_0$ is contained in the group of automorphisms, $A(H)$, of H. Since $A(H)$ is cyclic, $(G(X))_0$ is cyclic. Let τ be a generator of $(G(X))_0$. By Lemma 4, any two edges $[0, i]$ and $[0, j]$ incident with 0, there exists a $\tau^k \in (G(X))_0$ such that $i\tau^k = j$. This means that the length of the orbit of $(G(X))_0$ to which i belongs must be n. In fact, the length of every orbit of $(G(X))_0$ is n since $G(X)$ is $3/2$-fold transitive on $V(X) = H$. Consequently, the order of $(G(X))_0 = \langle \tau \rangle$ must also be n. $[0, i] \in E(X)$ implies $[0, i\tau^k] \in E(X)$ for $k = 0, 1, \ldots, n - 1$. Since X is a regular graph with cycles of length p combined together, X is a Cayley graph $X_{H, k}$, where $K = \{i, i\tau, \ldots, i\tau^{n - 1}\}$. Let σ be a generator of H, then $i = 1\sigma^t$ for some t, and K can be written as $\{1\sigma^t, (1\sigma^t)r, \ldots, (1\sigma^t)r^{n - 1}\}$.

Let Y be another symmetric graph with p vertices and degree n. We also label the vertices of Y by $0, 1, \ldots, p - 1$, i.e., $V(Y) = H$. Then, by the similar reasons, $(G(Y))_0 = \langle \theta \rangle$ is a cyclic subgroup of order n in H, and Y is a Cayley graph $Y_{H, K'}$, where $K' = \{m, m\theta, \ldots, m\theta^{n - 1}\}$ and $[0, m] \in E(Y)$. Since $\langle \theta \rangle = H$, $m = 1\sigma^s$ for some s, and $K' = \{1\sigma^s, (1\sigma^s)r, \ldots, (1\sigma^s)r^{n - 1}\}$. Since $A(H)$ is cyclic, the subgroup of order n in $A(H)$ is unique. Hence, $\langle \tau \rangle = \langle \theta \rangle$, and $K' = \{1\sigma^s, (1\sigma^s)r, \ldots, (1\sigma^s)r^{n - 1}\}$. By Lemma 2, $X \cong Y$. By Lemma 3, X and Y are so constructed that they do not depend on the choice of the generators σ of H.

In the proof of Theorem 2, we have shown the following:

Corollary 1. Let X be a symmetric graph with a prime number p of vertices and degree n where n is even, $0 < n < p - 1$ and n divides $p - 1$. Then $(G(X))_0 = \langle \tau \rangle$ is a cyclic group of order n generated by τ which can be regarded as an automorphism of the group of integers modulo p.

5. The group.

Theorem 3. Let X be the symmetric graph with a prime number p of vertices and degree n where $0 < n < p - 1$, n is even and n divides $p - 1$. Then

1. $G(X)$ is a Frobenius group. Hence $G(X)$ is $3/2$-fold transitive. $G(X)$ contains the dihedral group of order $2p$.

(2) $|G(X)| = np$.

(3) $\langle R \rangle$ is the Frobenius kernel of $G(X)$. Hence, $\langle R \rangle$ is normal in $G(X)$ where $R = (012\ldots(p-1))$.

(4) $G(X)$ is metacyclic.

(5) $G(X)$ is a semidirect product of the cyclic subgroups $\langle R \rangle$ and $(G(X))_0$. $G(X)$ is generated by R and σ with defining relations

$$R^n = e, \quad \sigma^n = e, \quad \sigma R \sigma^{-1} = R^r$$

where $r^n \equiv 1 \mod p$.

(6) All Sylow subgroups of $G(X)$ are cyclic.

Proof. (1) was proved in [1, Theorem 5]. Our Proposition 1 shows the dihedral group of order $2p$ belonging to $G(X)$.

(2) Since $G(X)$ is vertex-transitive $|G(X)|$ is equal to the product of $|(G(X))_0|$ and p by Corollary 5.2.1 on p. 56 in [3].

(3) Let N be the subset of $G(X)$ consisting of the identity together with those elements which fix no vertices. Then we know that, by Frobenius' theorem (see p. 292 in [3]), N is a normal subgroup of $G(X)$ (N is called the Frobenius kernel of $G(X)$), and the order of N is equal to the index of $(G(X))_0$ in $G(X)$, i.e., $|N| = p$ by (2). Since N clearly contains $\langle R \rangle$ and $|\langle R \rangle| = p$, $N = \langle R \rangle$.

(4) Since $G(X)/\langle R \rangle \simeq (G(X))_0$, $G(X)/\langle R \rangle$ is abelian. Hence $\langle R \rangle$ contains the commutator subgroup $(G(X))^2$ of $G(X)$. $G(X)$ containing the dihedral group implies $(G(X))^2 \neq \{e\}$. Since $\langle R \rangle$ is a cyclic group of order p, we have $\langle R \rangle = (G(X))^2$. Hence, $G(X)$ is metacyclic.

(5) Since $\langle R \rangle$ is normal in $G(X)$ and $\langle R \rangle \cap (G(X))_0 = \{e\}$, $G(X) = \langle R \rangle (G(X))_0$.

Since $(G(X))_0$ is a cyclic group of order n, $G(X)$ is generated by R and σ where σ is a generator of $(G(X))_0$, and σ by Corollary 1, belongs to the group of automorphisms of integers modulo p. Since $\langle R \rangle$ is normal in $G(X)$, $\sigma R \sigma^{-1} = R^r$ for some r. Then, using the fact that σ belongs to the group of automorphisms of integers modulo p, and σ is of order n, we have

$$\sigma R \sigma^{-1} = \begin{pmatrix} 0 & 1 & \cdots & k^{n-1} & \cdots \\ 0 & k & \cdots & 1 & \cdots \\ \vdots & \vdots & \ddots & \vdots & \ddots \\ 0 & k^{n-1} & \cdots & k^{n-1} & \cdots \\ k^{n-1} & 1 & \cdots & k^{n-1}(k+1) & \cdots \end{pmatrix} \begin{pmatrix} 0 & 1 & \cdots & (k+1) & \cdots \\ 1 & 2 & \cdots & (k+1) & \cdots \\ \vdots & \vdots & \ddots & \vdots & \ddots \\ 0 & k^{n-1} & \cdots & k^{n-1}(k+1) & \cdots \\ k^{n-1} & k^{n-1}(k+1) & \cdots & \cdots \end{pmatrix}$$

where we use the fact $k^n = 1$, and all the operations are taken modulo p. That means $r = k^{n-1}$, and $r^n = (k^{n-1})^n = (k^n)^{n-1} = 1$, i.e., $r^n \equiv 1 \mod p$, and we have obtained the defining relations.

(6) It follows from Theorem 9.4.3 on p. 146 in [3].

6. Summary and examples. For any given odd prime p, $p-1$ is even and is a product of primes $p-1 = 2^{t_1} q_2^{t_2} \cdots q_t^{t_t}$. From this decomposition we can find all even integers n_i such that $2 \leq n_i < p-1$ and n_i divides $p-1$. Say, there are k of them; and for each $i = 1, 2, \ldots, k$, we have $p-1 = n_i r_i$ for some integer r_i. Let σ be a generator of $A(H)$ which is the group of automorphisms of the group H of integers
modulo p, then σ is of order $p-1$. Let $\tau_i = \sigma^i$, then the order of τ_i is n_i. Let $K_i = \{1, \tau_i, \tau_i^2, \ldots, \tau_i^{n_i} = 1\}$, and we form the Cayley graph X_{H, K_i} which, by Theorems 1 and 2, is the unique (up to isomorphism) symmetric graph with p vertices and degree n_i. With the null graph and the complete graph, we have obtained all symmetric graphs with p vertices. With the help of Theorem 3, we know the structure of each of their groups of automorphisms.

The case of $p = 11$. Since $(p-1)/2$ is a prime, the only symmetric graphs of 11 vertices are null graph, complete graph and cycles of length 11. Their groups of automorphisms are S_{11}, S_{11} and D_{11} respectively.

The case of $p = 13$. Besides the null graph and the complete graph of 13 vertices (their group of automorphisms is S_{13}), the symmetric graphs with 13 vertices are with degree 2, 4 and 6. Let $H = \{0, 1, 2, \ldots, 12\}$ be the group of integers modulo 13. The group of automorphisms $A(H)$ of H is of order 12 generated by σ where $1 \sigma = 2$ (2 is a primitive root modulo 13). Hence, we have $\sigma = (1 2 4 8 3 6 12 11 9 5 10 7)$ and $A(H) = \{\sigma, \sigma^2, \ldots, \sigma^{12} = e\}$.

Degree 2. Each $X_{H, \{1, \sigma^i\}}, i = 1, 2, \ldots, 6$, is a cycle of length 13. Clearly, they are pairwise isomorphic. $G(X_{H, \{1, \sigma^i\}}) = D_{13}$, $i = 1, 2, \ldots, 6$.

Degree 4. Let $K_1 = \{1, \sigma^8 = 8, 1 \sigma^6 = 12, 1 \sigma^5 = 5, 1 \sigma^{12} = 1\}$. X_{H, K_1} is shown in Figure 1.
$K_2 = \{1^{\sigma_3} = 3, 1^{\sigma_7} = 11, 1^{\sigma_{10}} = 10, 1^{\sigma_2} = 2\}$ and $X_{H,K_2} \simeq X_{H,K_1}$ where the isomorphic map is σ. Similarly, $K_3 = \{1^{\sigma_6} = 6, 1^{\sigma_9} = 9, 1^{\sigma_{11}} = 7$ and $1^{\sigma_4} = 4\}$ and $X_{H,K_1} \simeq X_{H,K_3}$ where the isomorphic map is σ^2.

$G(X_{H,K_i}), i = 1, 2, 3$, is generated by R and $\tau = \sigma^3$ where

$$R = (012\ldots12), \quad \text{and} \quad \tau = (18125)(231110)(4697)$$

with $R^{13} = e$, $\tau^4 = e$ and $\tau R \tau^{-1} = R^5$. The order of $G(X_{H,K_i})$ is 52, $i = 1, 2, 3$.

Degree 6. Let $K_4 = \{1^{\sigma_2} = 4, 1^{\sigma_4} = 3, 1^{\sigma_8} = 12, 1^{\sigma_9} = 9, 1^{\sigma_{10}} = 10, 1^{\sigma_{12}} = 1\}$. X_{H,K_4} is shown in Figure 2.

Figure 2

$K_5 = \{1^{\sigma_3} = 8, 1^{\sigma_5} = 6, 1^{\sigma_7} = 11, 1^{\sigma_8} = 5, 1^{\sigma_{11}} = 7, 1^{\sigma_2} = 2\}$ and $X_{H,K_5} \simeq X_{H,K_0}$ where the isomorphic map is σ.

$G(X_{H,K_5}), j = 4, 5$, is generated by R and $\theta = \sigma^2$ where

$$R = (012\ldots12), \quad \text{and} \quad \theta = (14312910)(2861157)$$

with $R^{13} = e$, $\theta^6 = e$ and $\theta R \theta^{-1} = R^{10}$. The order of $G(X_{H,K_5})$ is 78.
REFERENCES

UNIVERSITY OF PITTSBURGH,
PITTSBURGH, PENNSYLVANIA 15213