Cyclic vectors and irreducibility for principal series representations.
HTML articles powered by AMS MathViewer
- by Nolan R. Wallach
- Trans. Amer. Math. Soc. 158 (1971), 107-113
- DOI: https://doi.org/10.1090/S0002-9947-1971-0281844-2
- PDF | Request permission
Abstract:
Canonical sets of cyclic vectors for principal series representations of semisimple Lie groups having faithful representations are found. These cyclic vectors are used to obtain estimates for the number of irreducible subrepresentations of a principal series representations. The results are used to prove irreducibility for the full principal series of complex semisimple Lie groups and for $SL(2n + 1,R),n \geqq 1$.References
- Hermann Boerner, Darstellungen von Gruppen mit Berücksichtigung der Bedürfnisse der modernen Physik, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Band LXXIV, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1955 (German). MR 0075211, DOI 10.1007/978-3-642-52808-8
- François Bruhat, Sur les représentations induites des groupes de Lie, Bull. Soc. Math. France 84 (1956), 97–205 (French). MR 84713, DOI 10.24033/bsmf.1469
- I. M. Gel′fand and M. I. Graev, Unitary representations of the real unimodular group (principal nondegenerate series), Izv. Akad. Nauk SSSR Ser. Mat. 17 (1953), 189–248 (Russian). MR 0057261
- Sigurđur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962. MR 0145455 A. Knapp and E. Stein, Singular integrals and the principal series, Proc. Nat. Acad. Sci. U.S.A. 63 (1969), 281-284. —, Singular integrals and the principal series. II, Proc. Nat. Acad. Sci. U.S.A. 65 (1970), 13-17.
- Bertram Kostant, On the existence and irreducibility of certain series of representations, Bull. Amer. Math. Soc. 75 (1969), 627–642. MR 245725, DOI 10.1090/S0002-9904-1969-12235-4
- Hideya Matsumoto, Quelques remarques sur les groupes de Lie algébriques réels, J. Math. Soc. Japan 16 (1964), 419–446 (French). MR 183816, DOI 10.2969/jmsj/01640419
- Nolan R. Wallach, Induced representations of Lie algebras and a theorem of Borel-Weil, Trans. Amer. Math. Soc. 136 (1969), 181–187. MR 233937, DOI 10.1090/S0002-9947-1969-0233937-4
- D. P. Želobenko, The analysis of irreducibility in the class of elementary rupresentations of a semisimple complex Lie group, Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968), 108–133 (Russian). MR 0227321
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 158 (1971), 107-113
- MSC: Primary 22.60
- DOI: https://doi.org/10.1090/S0002-9947-1971-0281844-2
- MathSciNet review: 0281844