## Arcwise connectedness of semiaposyndetic plane continua

HTML articles powered by AMS MathViewer

- by Charles L. Hagopian
- Trans. Amer. Math. Soc.
**158**(1971), 161-165 - DOI: https://doi.org/10.1090/S0002-9947-1971-0284981-1
- PDF | Request permission

## Abstract:

In a recent paper, the author proved that if a compact plane continuum $M$ contains a finite point set $F$ such that, for each point $x$ in $M - F,M$ is semi-locally-connected and not aposyndetic at $x$, then $M$ is arcwise connected. The primary purpose of this paper is to generalize that theorem. Semiaposyndesis, a generalization of semi-local-connectedness, is defined and arcwise connectedness is established for certain semiaposyndetic plane continua.## References

- Charles L. Hagopian,
*Concerning arcwise connectedness and the existence of simple closed curves in plane continua*, Trans. Amer. Math. Soc.**147**(1970), 389–402. MR**254823**, DOI 10.1090/S0002-9947-1970-0254823-8 - Charles L. Hagopian,
*A cut point theorem for plane continua*, Duke Math. J.**38**(1971), 509–512. MR**284980** - Charles L. Hagopian,
*The cyclic connectivity of plane continua*, Michigan Math. J.**18**(1971), 401–407. MR**300248** - F. Burton Jones,
*Aposyndetic continua and certain boundary problems*, Amer. J. Math.**63**(1941), 545–553. MR**4771**, DOI 10.2307/2371367 - F. Burton Jones,
*A characterization of a semi-locally-connected plane continuum*, Bull. Amer. Math. Soc.**53**(1947), 170–175. MR**19301**, DOI 10.1090/S0002-9904-1947-08776-0 - F. Burton Jones,
*Concerning non-aposyndetic continua*, Amer. J. Math.**70**(1948), 403–413. MR**25161**, DOI 10.2307/2372339
—, - R. L. Moore,
*Foundations of point set theory*, Revised edition, American Mathematical Society Colloquium Publications, Vol. XIII, American Mathematical Society, Providence, R.I., 1962. MR**0150722** - G. T. Whyburn,
*Semi-locally connected sets*, Amer. J. Math.**61**(1939), 733–749. MR**182**, DOI 10.2307/2371330
—,

*Problems in the plane*, Summary of Lectures and Seminars, Summer Institute on Set Theoretic Topology, Madison, Wisconsin 1955; revised 1957, pp. 70-71.

*Analytic topology*, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 28, Amer. Math. Soc., Providence, R. I., 1963. MR

**32**#425.

## Bibliographic Information

- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**158**(1971), 161-165 - MSC: Primary 54.55
- DOI: https://doi.org/10.1090/S0002-9947-1971-0284981-1
- MathSciNet review: 0284981