Generating and cogenerating structures
HTML articles powered by AMS MathViewer
- by John A. Beachy
- Trans. Amer. Math. Soc. 158 (1971), 75-92
- DOI: https://doi.org/10.1090/S0002-9947-1971-0288160-3
- PDF | Request permission
Abstract:
A functor $T:\mathcal {A} \to \mathcal {B}$ acts faithfully on the right of a class of objects $\mathcal {A}β$ of $\mathcal {A}$ if it distinguishes morphisms out of objects of $\mathcal {A}β$ (that is, $Aβ \in \mathcal {A}β,X \in \mathcal {A},f,g \in \mathcal {A}(Aβ,X)$ and $f \ne g$ implies $T(f) \ne T(g))$. We define a full subcategory $\mathcal {R}\mathcal {F}(T)$ such that $T$ acts faithfully on the right of the objects of $\mathcal {R}\mathcal {F}(T)$. An object $U \in \mathcal {A}$ is a generator if ${H^U}:\mathcal {A} \to \mathcal {E}ns$ is faithful, and if ${H^U}$ is not faithful, we may still consider $\mathcal {R}\mathcal {F}({H^U})$. This gives rise to the notion of a generating structure. Cogenerating structures are defined dually, and various canonical generating and cogenerating structures are defined for the category of $R$-modules. Relationships between these can be used in the homological classification of rings.References
- J. A. Beachy, Some homological classes of rings and modules, Ph.D. Thesis, Indiana University, Bloomington, Ind., 1967.
- J. P. Jans, Some aspects of torsion, Pacific J. Math. 15 (1965), 1249β1259. MR 191936
- Toyonori Kato, Torsionless modules, Tohoku Math. J. (2) 20 (1968), 234β243. MR 231854, DOI 10.2748/tmj/1178243180
- Joachim Lambek, Completions of categories, Lecture Notes in Mathematics, No. 24, Springer-Verlag, Berlin-New York, 1966. Seminar lectures given in 1966 in ZΓΌrich. MR 0209330
- J.-M. Maranda, Injective structures, Trans. Amer. Math. Soc. 110 (1964), 98β135. MR 163937, DOI 10.1090/S0002-9947-1964-0163937-X
- Barry Mitchell, Theory of categories, Pure and Applied Mathematics, Vol. XVII, Academic Press, New York-London, 1965. MR 0202787
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 158 (1971), 75-92
- MSC: Primary 18.10
- DOI: https://doi.org/10.1090/S0002-9947-1971-0288160-3
- MathSciNet review: 0288160