On the $C^*$-algebra of Toeplitz operators on the quarterplane
HTML articles powered by AMS MathViewer
- by R. G. Douglas and Roger Howe PDF
- Trans. Amer. Math. Soc. 158 (1971), 203-217 Request permission
Abstract:
Using the device of the tensor product of ${C^ \ast }$-algebras, we study the ${C^ \ast }$-algebra generated by the Toeplitz operators on the quarter-plane. We obtain necessary and sufficient conditions for such an operator to be Fredholm, but show in this case that not all such operators are invertible.References
- Manfred Breuer, Fredholm theories in von Neumann algebras. I, Math. Ann. 178 (1968), 243–254. MR 234294, DOI 10.1007/BF01350663
- Manfred Breuer, Fredholm theories in von Neumann algebras. II, Math. Ann. 180 (1969), 313–325. MR 264407, DOI 10.1007/BF01351884
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
- L. A. Coburn, The $C^{\ast }$-algebra generated by an isometry, Bull. Amer. Math. Soc. 73 (1967), 722–726. MR 213906, DOI 10.1090/S0002-9904-1967-11845-7
- L. A. Coburn, The $C^{\ast }$-algebra generated by an isometry. II, Trans. Amer. Math. Soc. 137 (1969), 211–217. MR 236720, DOI 10.1090/S0002-9947-1969-0236720-9
- L. A. Coburn and R. G. Douglas, Translation operators on the half-line, Proc. Nat. Acad. Sci. U.S.A. 62 (1969), 1010–1013. MR 275228, DOI 10.1073/pnas.62.4.1010
- L. A. Coburn and R. G. Douglas, $C^{\ast }$-algebras of operators on a half-space. I, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 59–67. MR 358417, DOI 10.1007/BF02684693
- L. A. Coburn, R. G. Douglas, D. G. Schaeffer, and I. M. Singer, $C^{\ast }$-algebras of operators on a half-space. II. Index theory, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 69–79. MR 358418, DOI 10.1007/BF02684694
- Jacques Dixmier, Les $C^{\ast }$-algèbres et leurs représentations, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars & Cie, Éditeur-Imprimeur, Paris, 1964 (French). MR 0171173
- R. G. Douglas, On the spectrum of a class of Toeplitz operators, J. Math. Mech. 18 (1968/1969), 433–435. MR 0239442, DOI 10.1512/iumj.1969.18.18034
- R. G. Douglas, On the spectrum of Toeplitz and Wiener-Hopf operators, Abstract Spaces and Approximation (Proc. Conf., Oberwolfach, 1968) Birkhäuser, Basel, 1969, pp. 53–66. MR 0259638
- I. C. Gohberg and M. G. Kreĭn, Systems of integral equations on a half line with kernels depending on the difference of arguments, Amer. Math. Soc. Transl. (2) 14 (1960), 217–287. MR 0113114, DOI 10.1090/trans2/014/09
- L. S. Gol′denšteĭn, Criteria for one-sided invertibility of functions of several isometric operators and their applications, Dokl. Akad. Nauk SSSR 155 (1964), 28–31 (Russian). MR 0161195
- L. S. Gol′denšteĭn and I. C. Gohberg, On a multidimensional integral equation on a half-space whose kernel is a function of the difference of the arguments, and on a discrete analogue of this equation, Soviet Math. Dokl. 1 (1960), 173–176. MR 0117519
- Ulf Grenander and Gabor Szegö, Toeplitz forms and their applications, California Monographs in Mathematical Sciences, University of California Press, Berkeley-Los Angeles, 1958. MR 0094840
- Paul R. Halmos, A Hilbert space problem book, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0208368 M. Kac, Theory and applications of Toeplitz forms, Summer Institute on Spectral Theory and Statistical Mechanics, Brookhaven National Laboratories, 1965.
- M. G. Kreĭn, Integral equations on the half-line with a kernel depending on the difference of the arguments, Uspehi Mat. Nauk 13 (1958), no. 5 (83), 3–120 (Russian). MR 0102721
- V. A. Malyšev, The solution of the discrete Wiener-Hopf equations in a quarter-plane. , Dokl. Akad. Nauk SSSR 187 (1969), 1243–1246 (Russian). MR 0262858
- Stanley Osher, Systems of difference equations with general homogeneous boundary conditions, Trans. Amer. Math. Soc. 137 (1969), 177–201. MR 237982, DOI 10.1090/S0002-9947-1969-0237982-4
- Stanley J. Osher, On certain Toeplitz operators in two variables, Pacific J. Math. 34 (1970), 123–129. MR 267408, DOI 10.2140/pjm.1970.34.123
- Walter Rudin, Function theory in polydiscs, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0255841
- I. B. Simonenko, Convolution type operators in cones, Mat. Sb. (N.S.) 74 (116) (1967), 298–313 (Russian). MR 0222723
- Masamichi Takesaki, On the cross-norm of the direct product of $C^{\ast }$-algebras, Tohoku Math. J. (2) 16 (1964), 111–122. MR 165384, DOI 10.2748/tmj/1178243737
Additional Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 158 (1971), 203-217
- MSC: Primary 46.65
- DOI: https://doi.org/10.1090/S0002-9947-1971-0288591-1
- MathSciNet review: 0288591