## Noncommutative Jordan rings

HTML articles powered by AMS MathViewer

- by Kevin McCrimmon
- Trans. Amer. Math. Soc.
**158**(1971), 1-33 - DOI: https://doi.org/10.1090/S0002-9947-1971-0310024-7
- PDF | Request permission

## Abstract:

Heretofore most investigations of noncommutative Jordan algebras have been restricted to algebras over fields of characteristic $\ne 2$ in order to make use of the passage from a noncommutative Jordan algebra $\mathfrak {A}$ to the commutative Jordan algebra ${\mathfrak {A}^ + }$ with multiplication $x \cdot y = \frac {1}{2}(xy + yx)$. We have recently shown that from an arbitrary noncommutative Jordan algebra $\mathfrak {A}$ one can construct a quadratic Jordan algebra ${\mathfrak {A}^ + }$ with a multiplication ${U_x}y = x(xy + yx) - {x^2}y = (xy + yx)x - y{x^2}$, and that these quadratic Jordan algebras have a theory analogous to that of commutative Jordan algebras. In this paper we make use of this passage from $\mathfrak {A}$ to ${\mathfrak {A}^ + }$ to derive a general structure theory for noncommutative Jordan rings. We define a Jacobson radical and show it coincides with the nil radical for rings with descending chain condition on inner ideals; semisimple rings with d.c.c. are shown to be direct sums of simple rings, and the simple rings to be essentially the familiar ones. In addition we obtain results, which seem to be new even in characteristic $\ne 2$, concerning algebras without finiteness conditions. We show that an arbitrary simple noncommutative Jordan ring containing two nonzero idempotents whose sum is not 1 is either commutative or quasiassociative.## References

- A. A. Albert,
*Power-associative rings*, Trans. Amer. Math. Soc.**64**(1948), 552β593. MR**27750**, DOI 10.1090/S0002-9947-1948-0027750-7 - Kevin McCrimmon,
*A general theory of Jordan rings*, Proc. Nat. Acad. Sci. U.S.A.**56**(1966), 1072β1079. MR**202783**, DOI 10.1073/pnas.56.4.1072 - Kevin McCrimmon,
*Structure and representations of noncommutative Jordan algebras*, Trans. Amer. Math. Soc.**121**(1966), 187β199. MR**188261**, DOI 10.1090/S0002-9947-1966-0188261-2 - Kevin McCrimmon,
*The radical of a Jordan algebra*, Proc. Nat. Acad. Sci. U.S.A.**62**(1969), 671β678. MR**268238**, DOI 10.1073/pnas.62.3.671 - Kevin McCrimmon,
*A note on quasi-associative algebras*, Proc. Amer. Math. Soc.**17**(1966), 1455β1459. MR**238910**, DOI 10.1090/S0002-9939-1966-0238910-0 - K. McCrimmon,
*Norms and noncommutative Jordan algebras*, Pacific J. Math.**15**(1965), 925β956. MR**204477** - Kevin McCrimmon,
*Quadratic Jordan algebras and cubing operations*, Trans. Amer. Math. Soc.**153**(1971), 265β278. MR**268239**, DOI 10.1090/S0002-9947-1971-0268239-2 - K. McCrimmon and R. D. Schafer,
*On a class of noncommutative Jordan algebras*, Proc. Nat. Acad. Sci. U.S.A.**56**(1966), 1β4. MR**206063**, DOI 10.1073/pnas.56.1.1 - R. D. Schafer,
*Noncommutative Jordan algebras of characteristic $0$*, Proc. Amer. Math. Soc.**6**(1955), 472β475. MR**70627**, DOI 10.1090/S0002-9939-1955-0070627-0 - R. D. Schafer,
*Restricted noncommutative Jordan algebras of characteristic $p$*, Proc. Amer. Math. Soc.**9**(1958), 141β144. MR**103915**, DOI 10.1090/S0002-9939-1958-0103915-2 - Richard D. Schafer,
*An introduction to nonassociative algebras*, Pure and Applied Mathematics, Vol. 22, Academic Press, New York-London, 1966. MR**0210757**
K. C. Smith, - N. Jacobson,
*Lectures on quadratic Jordan algebras*, Tata Institute of Fundamental Research Lectures on Mathematics, No. 45, Tata Institute of Fundamental Research, Bombay, 1969. MR**0325715**
R. E. Lewand and K. McCrimmon,

*Noncommutative Jordan algebras of capacity*2 (to appear).

*Macdonaldβs theorem for quadratic Jordan algebras*, Pacific J. Math. (1971).

## Bibliographic Information

- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**158**(1971), 1-33 - MSC: Primary 17A15
- DOI: https://doi.org/10.1090/S0002-9947-1971-0310024-7
- MathSciNet review: 0310024