Whitehead products as images of Pontrjagin products
HTML articles powered by AMS MathViewer
- by Martin Arkowitz PDF
- Trans. Amer. Math. Soc. 158 (1971), 453-463 Request permission
Abstract:
A method is given for computing higher order Whitehead products in the homotopy groups of a space $X$. If $X$ can be embedded in an $H$-space $E$ such that the pair $(E,X)$ has sufficiently high connectivity, then we prove that a higher order Whitehead product element in the homotopy of $X$ is the homomorphic image of a Pontrjagin product in the homology of $E$. The two main applications determine a higher order Whitehead product element in (1) ${\pi _ \ast }(B{U_t})$, the homotopy groups of the classifying space of the unitary group ${U_t}$, (2) the homotopy groups of a space with two nonvanishing homotopy groups.References
- Martin Arkowitz, A homological method for computing certain Whitehead products, Bull. Amer. Math. Soc. 74 (1968), 1079–1082. MR 240814, DOI 10.1090/S0002-9904-1968-12053-1
- Raoul Bott, A note on the Samelson product in the classical groups, Comment. Math. Helv. 34 (1960), 249–256. MR 123330, DOI 10.1007/BF02565939
- R. Bott and H. Samelson, On the Pontryagin product in spaces of paths, Comment. Math. Helv. 27 (1953), 320–337 (1954). MR 60233, DOI 10.1007/BF02564566 Séminaire Henri Cartan École Norm. Sup. 1954/55, Secrétariat mathématique, Paris, 1955. MR 19, 438. Séminaire Henri Cartan 1959/60, École Norm. Sup., Secrétariat mathématique, Paris, 1961. MR 28 #1092.
- Arthur H. Copeland Jr., The Pontrjagin ring for certain loop spaces, Proc. Amer. Math. Soc. 7 (1956), 528–534. MR 78691, DOI 10.1090/S0002-9939-1956-0078691-0
- Sze-tsen Hu, Homotopy theory, Pure and Applied Mathematics, Vol. VIII, Academic Press, New York-London, 1959. MR 0106454
- Jean-Pierre Meyer, Whitehead products and Postnikov systems, Amer. J. Math. 82 (1960), 271–280. MR 149477, DOI 10.2307/2372735
- G. J. Porter, Spaces with vanishing Whitehead products, Quart. J. Math. Oxford Ser. (2) 16 (1965), 77–84. MR 172292, DOI 10.1093/qmath/16.1.77
- Gerald J. Porter, Higher order Whitehead products and Postnikov systems, Illinois J. Math. 11 (1967), 414–416. MR 224091
- Norman Stein, Note on the realization of Whitehead products, Quart. J. Math. Oxford Ser. (2) 17 (1966), 160–164. MR 196746, DOI 10.1093/qmath/17.1.160
- George W. Whitehead, A generalization of the Hopf invariant, Ann. of Math. (2) 51 (1950), 192–237. MR 41435, DOI 10.2307/1969506
Additional Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 158 (1971), 453-463
- MSC: Primary 55.40
- DOI: https://doi.org/10.1090/S0002-9947-1971-0278300-4
- MathSciNet review: 0278300