Differentiable monotone maps on manifolds. II
HTML articles powered by AMS MathViewer
- by P. T. Church PDF
- Trans. Amer. Math. Soc. 158 (1971), 493-501 Request permission
Abstract:
Let ${M^n}$ and ${N^n}$ be closed manifolds, and let $G$ be any (nonzero) module. (1) If $f:{M^3} \to {N^3}$ is ${C^3}$ $G$-acyclic, then there is a closed ${C^3}$ $3$-manifold ${K^3}$ such that ${N^3}\# {K^3}$ is diffeomorphic to ${M^3}$, and ${f^{ - 1}}(y)$ is cellular for all but at most $r$ points $y \in {N^3}$, where $r$ is the number of nontrivial $G$-cohomology $3$-spheres in the prime decomposition of ${K^3}$. (2) If $f:{M^3} \to {M^3}$ or $f:{S^3} \to {M^3}$ is $G$-acyclic, then $f$ is cellular. In case $G$ is $Z$ or ${Z_p}$ ($p$ prime), results analogous to (1) and (2) in the topological category have been proved by Alden Wright. (3) If $f:{M^n} \to {M^n}$ or $f:{S^n} \to {M^n}$ is real analytic monotone onto, then $f$ is a homeomorphism.References
- Steve Armentrout, Cellular decompositions of $3$-manifolds that yield $3$-manifolds, Bull. Amer. Math. Soc. 75 (1969), 453–456. MR 239578, DOI 10.1090/S0002-9904-1969-12218-4
- Steve Armentrout, Upper semi-continuous decompositions of $E^{3}$ with at most countably many non-degenerate elements, Ann. of Math. (2) 78 (1963), 605–618. MR 156331, DOI 10.2307/1970546
- Armand Borel and André Haefliger, La classe d’homologie fondamentale d’un espace analytique, Bull. Soc. Math. France 89 (1961), 461–513 (French). MR 149503
- Marston Morse, A reduction of the Schoenflies extension problem, Bull. Amer. Math. Soc. 66 (1960), 113–115. MR 117694, DOI 10.1090/S0002-9904-1960-10420-X
- P. T. Church, Differentiable maps with non-negative Jacobian, J. Math. Mech. 16 (1967), 703–708. MR 0205263
- P. T. Church, Differentiable monotone maps on manifolds, Trans. Amer. Math. Soc. 128 (1967), 185–205. MR 242172, DOI 10.1090/S0002-9947-1967-0242172-3
- P. T. Church, Differentiable open maps on manifolds, Trans. Amer. Math. Soc. 109 (1963), 87–100. MR 154296, DOI 10.1090/S0002-9947-1963-0154296-6
- P. T. Church, Factorization of differentiable maps with branch set dimension at most $n-3$, Trans. Amer. Math. Soc. 115 (1965), 370–387. MR 195101, DOI 10.1090/S0002-9947-1965-0195101-3
- P. T. Church, On points of Jacobian rank $k$. II, Proc. Amer. Math. Soc. 16 (1965), 1035–1038. MR 182017, DOI 10.1090/S0002-9939-1965-0182017-7
- P. T. Church and W. D. Nathan, Real analytic maps on manifolds, J. Math. Mech. 19 (1969/1970), 19–36. MR 0243539, DOI 10.1512/iumj.1970.19.19003
- P. T. Church and J. G. Timourian, Fiber bundles with singularities, J. Math. Mech. 18 (1968/1969), 71–90. MR 0235572, DOI 10.1512/iumj.1969.18.18008 H. Kneser, Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten, Jber. Deutsch. Math.-Verein. 30 (1929), 248-260.
- Kyung Whan Kwun and Frank Raymond, Almost acyclic maps on manifolds, Amer. J. Math. 86 (1964), 638–650. MR 184239, DOI 10.2307/2373028
- Saunders Mac Lane, Homology, Die Grundlehren der mathematischen Wissenschaften, Band 114, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. MR 0156879
- D. R. McMillan Jr., Acyclicity in three-manifolds, Bull. Amer. Math. Soc. 76 (1970), 942–964. MR 270380, DOI 10.1090/S0002-9904-1970-12510-1
- D. R. McMillan Jr., Compact, acyclic subsets of three-manifolds, Michigan Math. J. 16 (1969), 129–136. MR 243501 —, Decompositions of euclidean space yielding a manifold, Notices Amer. Math. Soc. 17 (1970), 679. Abstract #70T-G81.
- D. R. McMillan Jr., Strong homotopy equivalence of $3$-manifolds, Bull. Amer. Math. Soc. 73 (1967), 718–722. MR 229243, DOI 10.1090/S0002-9904-1967-11843-3
- J. Milnor, A unique decomposition theorem for $3$-manifolds, Amer. J. Math. 84 (1962), 1–7. MR 142125, DOI 10.2307/2372800
- James R. Munkres, Elementary differential topology, Annals of Mathematics Studies, No. 54, Princeton University Press, Princeton, N.J., 1963. Lectures given at Massachusetts Institute of Technology, Fall, 1961. MR 0163320
- James Munkres, Obstructions to the smoothing of piecewise-differentiable homeomorphisms, Ann. of Math. (2) 72 (1960), 521–554. MR 121804, DOI 10.2307/1970228
- Richard S. Palais, Natural operations on differential forms, Trans. Amer. Math. Soc. 92 (1959), 125–141. MR 116352, DOI 10.1090/S0002-9947-1959-0116352-7
- T. Rado and P. V. Reichelderfer, Continuous transformations in analysis. With an introduction to algebraic topology, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Band LXXV, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1955. MR 0079620
- J. H. Roberts and N. E. Steenrod, Monotone transformations of two-dimensional manifolds, Ann. of Math. (2) 39 (1938), no. 4, 851–862. MR 1503441, DOI 10.2307/1968468
- Arthur Sard, Hausdorff measure of critical images on Banach manifolds, Amer. J. Math. 87 (1965), 158–174. MR 173748, DOI 10.2307/2373229 L. C. Siebenmann, Approximating cellular maps by homeomorphisms, Notices Amer. Math. Soc. 17 (1970), 532. Abstract #674-40.
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR 0210112
- Shlomo Sternberg, Lectures on differential geometry, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0193578
- René Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17–86 (French). MR 61823, DOI 10.1007/BF02566923 J. R. Walker, Monotone mappings and monotone decompositions, Ph.D. Dissertation, Syracuse University, Syracuse, New York, 1970.
- Hassler Whitney, Differentiable manifolds, Ann. of Math. (2) 37 (1936), no. 3, 645–680. MR 1503303, DOI 10.2307/1968482
- Gordon Thomas Whyburn, Analytic Topology, American Mathematical Society Colloquium Publications, Vol. 28, American Mathematical Society, New York, 1942. MR 0007095 A. Wright, Mappings from $3$-manifolds onto $3$-manifolds (to appear). —, Monotone mappings of compact $3$-manifolds, Notices Amer. Math. Soc. 16 (1969), 853-854. Abstract #69T-G121.
Additional Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 158 (1971), 493-501
- MSC: Primary 57.20
- DOI: https://doi.org/10.1090/S0002-9947-1971-0278320-X
- MathSciNet review: 0278320